101 research outputs found

    NIMBUS: The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

    Get PDF
    We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This design is capable of characterizing a large sample of extrasolar planet atmospheres by measuring elemental and molecular abundances during primary transit and occultation. This wide-field spectroimager would also provide new insights into Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts. NIMBUS would be the premier ultraprecise spectroimager by taking advantage of the SOFIA observatory and state of the art infrared technologies. This optical design splits the beam into eight separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise calibration for imaging and photometry for a wide variety of astrophysical sources. NIMBUS produces the same data products as a low-resolution integral field spectrograph over a large spectral bandpass, but this design obviates many of the problems that preclude high-precision measurements with traditional slit and integral field spectrographs. This instrument concept is currently not funded for development.Comment: 14 pages, 9 figures, SPIE Astronomical Telescopes and Instrumentation 201

    Protectin conjugates in tissue regeneration 1 alleviates sepsis-induced acute lung injury by inhibiting ferroptosis

    Get PDF
    Background: Acute lung injury (ALI) is a common and serious complication of sepsis with high mortality. Ferroptosis, categorized as programmed cell death, contributes to the development of lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is an endogenous lipid mediator that exerts protective effects against multiorgan injury. However, the role of PCTR1 in the ferroptosis of sepsis-related ALI remains unknown. Methods: A pulmonary epithelial cell line and a mouse model of ALI stimulated with lipopolysaccharide (LPS) were established in vitro and in vivo. Ferroptosis biomarkers, including ferrous (Fe2+), glutathione (GSH), malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE), were assessed by relevant assay kits. Glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein levels were determined by western blotting. Lipid peroxides were examined by fluorescence microscopy and flow cytometry. Cell viability was determined by a CCK-8 assay kit. The ultrastructure of mitochondria was observed with transmission electron microscopy. Morphology and inflammatory cytokine levels predicted the severity of lung injury. Afterward, related inhibitors were used to explore the potential mechanism by which PCTR1 regulates ferroptosis. Results: PCTR1 treatment protected mice from LPS-induced lung injury, which was consistent with the effect of the ferroptosis inhibitor ferrostatin-1. PCTR1 treatment decreased Fe2+, PTGS2 and lipid reactive oxygen species (ROS) contents, increased GSH and GPX4 levels and ameliorated mitochondrial ultrastructural injury. Administration of LPS or the ferroptosis agonist RSL3 resulted in reduced cell viability, which was rescued by PCTR1. Mechanistically, inhibition of the PCTR1 receptor lipoxin A4 (ALX), protein kinase A (PKA) and transcription factor cAMP-response element binding protein (CREB) partly decreased PCTR1 upregulated GPX4 expression and a CREB inhibitor blocked the effects ofPCTR1 on ferroptosis inhibition and lung protection. Conclusion: This study suggests that PCTR1 suppresses LPS-induced ferroptosis via the ALX/PKA/CREB signaling pathway, which may offer promising therapeutic prospects in sepsis-related ALI

    Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation

    Get PDF
    BACKGROUND: Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. METHODS: Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. RESULTS: Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). CONCLUSIONS: Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM

    Evaluation of Tolerability, Pharmacokinetics and Pharmacodynamics of Vicagrel, a Novel P2Y12 Antagonist, in Healthy Chinese Volunteers

    Get PDF
    Background: Vicagrel is a novel anti-platelet drug and hydrolyzed to the same intermediate as clopidogrel via esterase, instead of CYP2C19. Here we report the first clinical trial on the tolerability, pharmacokinetics and pharmacodynamics of different doses of vicagrel, and comparison with clopidogrel in healthy Chinese volunteers.Methods: This study was conducted in two parts. Study I was a dose-escalating (5–15 mg) study. For each dose, 15 participants were randomized into three groups (total n = 45); nine participants were given vicagrel, three were given clopidogrel, and three were given a placebo. Study II was conducted to assess interactions between vicagrel and aspirin in 15 healthy participants. The plasma concentrations of the metabolites of vicagrel and clopidogrel were determined using a LC-MS/MS method. Platelet aggregation was assessed using the VerifyNow-P2Y12 assay.Results: Vicagrel (5–15 mg per day) dosing for 10 days or addition of aspirin was well tolerated in healthy volunteers. The exposure of the active metabolite increased proportionally across the dose range and was higher (~10-fold) than clopidogrel. The levels of IPA dosing 75 mg clopidogrel were between the responses of 5 mg and 10 mg vicagrel. After a single loading dose of vicagrel (30 mg) and a once-daily maintenance dose (7.5 mg) for 8 days, the maximum inhibition of platelet aggregation was similar to that seen with the combined use of vicagrel and aspirin (100 mg/day).Conclusion: Oral vicagrel demonstrated a favorable safety profile and excellent anti-platelet activity, which could be a promising P2Y12 antagonist as anti-platelet drug and can be further developed in phase II/III studies, and marketing for the unmet medical needs of cardiovascular diseases. The study was registered at http://www.chictr.org.cn (ChiCTR-IIR-16009260)

    Characterisation of ACC oxidase isoforms during leaf maturation and senescence in white clover (Trifolium repens L.) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Biology at Massey University, Palmerston North, New Zealand

    Get PDF
    One-aminocyclopropane-1-carboxylic acid (ACC oxidase, the enzyme which catalyses the final step in the ACC-dependent pathway of ethylene biosynthesis in plants, has been studied during leaf maturation and senescence in white clover (Trifolium repens L.). The coding regions from two white clover ACC oxidase genes, designated TR-ACO2 (expressed in mature green leaves) and TR-ACO3 (expressed in senescent leaves), have been expressed in E. coli as fusion proteins. The expression of the two proteins has been optimised in terms of induction time with isopropyl-β-D-thiogalactopyranoside (IPTG) and IPTG concentration. The solubility of the fusion proteins was low but lysis buffer containing 0.5 % (w/v) SDS or 0.5 % (v/v) Triton X-100 produced a higher protein yield. The recombinant TR-ACO2 and TR-ACO3 proteins were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and had an apparent molecular mass of 38 kDa. Enzyme activities of the purified TR-ACO2 and TR-ACO3 fusion proteins were 0.34 and 0.23 nmol ethylene/h/mg protein, respectively. Activity in vitro of ACC oxidase, extracted from both mature green and senescent leaf tissues, was observed to be very labile at 20°C with lower temperature, ascorbate and 1,10-phenanthroline (PA) required to help stabilise the enzyme activity in vitro during enzyme extraction and purification. Three isoforms of ACC oxidase, one from mature green leaves, designated MGI and two from senescent leaves, designated SEI and SEII, have been identified. Two of the three isoforms (MGI and SEII) were purified to homogeneity as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis with Coomassie Brilliant Blue staining and western analysis. The purified isoforms MGI and SEII had specific enzyme activities of 25.2 and 29.8 nmol ethylene/h/ mg protein at pH 7.5 with approximately 100- and 144-fold purification, respectively. During purification, both isoforms were recognised by an antibody raised against the protein product of TR-ACO2 expressed in E. coli. The native molecular mass of the purified isoforms MGI and SEII was determined to be 37.5 kDa by size exclusion chromatography and molecular masses of MGI and SEII were observed to be 37 kDa and 35 kDa, respectively by SDS-PAGE analysis. The data indicate that both isoforms are active as monomers. Both isoforms were found to be neutral or near neutral proteins with apparent isoelectric points (pIs) of 7.36 for isoform MGI and 7.0 for SEII determined by chromatofocusing. The Optimal pHs for MGI and SEII were 7.5 and 8.5, respectively. The two isoforms also displayed differences in apparent K m and V max values for the substrate ACC. The K m values for MGI and SEII were determined to be 39.7 μM and 110.0 μM, respectively. SEII had a higher V max value for ACC than MGI. The data indicate that MGI displays a higher affinity for ACC, SEII requires a higher ACC concentration to achieve the higher enzyme activity and can operate in an enviroment with higher levels of ACC. In addition, both isoforms exhibited absolute requirements for the co-substrate ascorbate and the cofactors bicarbonate and ferrous iron for maximal enzyme activity in vitro with different optimal concentrations for ascorbate and ferrous iron. The data suggest that the two ACC oxidase isoforms are differentially regulated by pH and ACC concentration and are activated by different levels of cofactors. The significant differences between the two isoforms (pH optimum and K m for ACC) may reflect the distinct physiological status of the leaf tissue in which each isoform is active. These results show that now widely observed transcriptional regulation of the ACC oxidase gene family is also expressed in terms of differential regulation of isoforms of this enzyme in higher plants

    Isoprene Synthase and the Relationship to the Terpene Synthase Family

    No full text

    System-Theoretic Process Analysis Based on SysML/MARTE and NuSMV

    No full text
    Systems Theoretical Accident Model and Process (STAMP), which considers system safety as an emergent property of the system, is a more effective accident/loss causality model for modern complex systems. Based on STAMP, System Theoretical Process Analysis (STPA) has attracted increasing attention as a new approach to hazard analysis, and relevant international standards are being developed. However, STPA is mainly performed manually, leading to inefficiencies, and constructs models in non-standard language, hindering the integration with existing systems engineering. STPA-SN (STPA based on SysML/MARTE and NuSMV) is proposed to build model in SysML, describing the timing with MARTE (Modeling and Analysis of Real-Time and Embedded Systems), transform SysML model into NuSMV model and output loss scenarios automatically with model checker. An application example of STPA-SN is provided to demonstrate potentials for higher efficiency of analysis and for collaboration with SysML-based systems engineering
    • …
    corecore