81 research outputs found

    Effects of post-harvest natural drying on seed quality and endogenous hormones of Camellia oleifera

    Get PDF
    Camellia oleifera Abel. (C. oleifera), one of the four woody oil-producing plants in the world produces edible oils with high percentage of unsaturated fatty acid content in seeds. The mature C. oleifera seeds continue to undergo a series of physiological changes after harvest. To this end, the dynamic changes in nutrients, oil content, fatty acid composition, and endogenous hormone content in C. oleifera seeds under different natural drying times after harvest were investigated. The content of soluble sugar and soluble protein of C. oleifera seeds increased with the extension of natural drying, especially soluble sugar content increased nearly 2-fold at 30 d after post-harvest natural drying compared with that of the control group. The content of oil reached a peak (23.6%) at 30 d after post-harvest natural drying. During the post-harvest natural drying process, the relative content of palmitic acid and oleic acid increased, while the relative content of palmitic acid and linoleic acid decreased. Furthermore, the levels of unsaturated fatty acids (oleic acid, linoleic acid, linolenic acid, and arachidonic acid) increased significantly with increasing natural drying time. The overall trend of endogenous hormones SA, SL, and ACC concentrations increased with the post-harvest natural drying process. Furthermore, the concentration of SA, SL, and ACC were positively correlated with oil content. Altogether, post-harvest natural drying for 30 days significantly promoted the anabolism of oil and improved the quality of C. oleifera seeds. These findings provide a scientific basis for reasonable post-harvest treatment to improve Camellia oil yield

    Generation of ESTs for Flowering Gene Discovery and SSR Marker Development in Upland Cotton

    Get PDF
    BACKGROUND: Upland cotton, Gossypium hirsutum L., is one of the world's most important economic crops. In the absence of the entire genomic sequence, a large number of expressed sequence tag (EST) resources of upland cotton have been generated and used in several studies. However, information about the flower development of this species is rare. METHODOLOGY/PRINCIPAL FINDINGS: To clarify the molecular mechanism of flower development in upland cotton, 22,915 high-quality ESTs were generated and assembled into 14,373 unique sequences consisting of 4,563 contigs and 9,810 singletons from a normalized and full-length cDNA library constructed from pooled RNA isolated from shoot apexes, squares, and flowers. Comparative analysis indicated that 5,352 unique sequences had no high-degree matches to the cotton public database. Functional annotation showed that several upland cotton homologs with flowering-related genes were identified in our library. The majority of these genes were specifically expressed in flowering-related tissues. Three GhSEP (G. hirsutum L. SEPALLATA) genes determining floral organ development were cloned, and quantitative real-time PCR (qRT-PCR) revealed that these genes were expressed preferentially in squares or flowers. Furthermore, 670 new putative microsatellites with flanking sequences sufficient for primer design were identified from the 645 unigenes. Twenty-five EST-simple sequence repeats were randomly selected for validation and transferability testing in 17 Gossypium species. Of these, 23 were identified as true-to-type simple sequence repeat loci and were highly transferable among Gossypium species. CONCLUSIONS/SIGNIFICANCE: A high-quality, normalized, full-length cDNA library with a total of 14,373 unique ESTs was generated to provide sequence information for gene discovery and marker development related to upland cotton flower development. These EST resources form a valuable foundation for gene expression profiling analysis, functional analysis of newly discovered genes, genetic linkage, and quantitative trait loci analysis

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    Get PDF
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013–2022), the first ten-year stage of the lifespan CCNP (2013–2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0–17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the “Chinese Data-sharing Warehouse for In-vivo Imaging Brain” in the Chinese Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank

    Genome-wide characterization, identification and expression analysis of WD40 proteins family in cotton

    No full text
    Abstract WD40 repeat proteins are largely distributed across the plant kingdom and played an important role in diverse biological activities. In this work, we performed genome-wide identification, characterization and expression level analysis of WD40 genes in cotton. A total of 579, 318 and 313 WD40 genes were found in Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, respectively. Based on phylogenetic tree analyses, WD40 genes were divided into 11 groups with high similarities in exon/intron features and protein domains within the group. Expression analysis of WD40 genes showed differential expression at different stages of cotton fiber development (0 and 8 DPA) and cotton stem. A number of miRNAs were identified to target WD40 genes that are significantly involved in cotton fiber development during initiation and elongation stages. These include miR156, miR160, miR162, miR164, miR166, miR167, miR169, miR171, miR172, miR393, miR396, miR398, miR2950 and miR7505. The findings provide a stronger indication of WD40 gene functions and their involvement in the regulation of cotton fiber development during initiation and elongation stages.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance

    No full text
    Cotton yields are greatly reduced under high salinity stress conditions, although cotton is considered a moderately salt-tolerant crop. Understanding at the molecular level how cotton responds to salt stress will help in developing salt tolerant varieties. Here, we combined physiological analysis with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics of seedling leaves of 2 genotypes differing in salinity tolerance to 200 mM (18.3 dS/m) NaCl stress. Salt stress produced significant stress symptoms in the sensitive genotype Nan Dan Ba Di Da Hua (N), including lower relative water and chlorophyll contents and higher relative electrolyte leakage and Na+/K+ ratio in leaf samples, compared with those in the tolerant genotype Earlistaple 7 (Z). A total of 58 differentially abundant salt-responsive proteins were identified. Asp-Glu-Ala-Asp (DEAD)-box ATP-dependent RNA helicase 3 and protochlorophyllide reductase were markedly suppressed after salt treatment, whereas the phosphate-related differentially abundant proteins (DAPs) phosphoethanolamine N-methyltransferase 1 and 14-3-3-like protein E were induced, and all these proteins may play significant roles in salt stress. Twenty-nine salt-responsive proteins were also genotype specific, and 62.1 and 27.6% of these were related to chloroplast and defense responses, respectively. Based on the Arabidopsis thaliana protein interaction database, orthologs of 25 proteins showed interactions in Arabidopsis, and among these, a calmodulin protein was predicted to have 212 functional partners. In addition, the Golgi apparatus and calcium may be important for salt secretion in cotton. Through integrative proteome and transcriptome analysis, 16 DAPs were matched to differentially expressed genes and verified using qRT-PCR. On the basis of these findings, we proposed that some proteins related to chloroplast, ATP, ribosomal, and phosphate metabolism as well as to the Golgi apparatus and calcium may play key roles in the short-term salt stress response of cotton seedling leaves

    Roles of interleukin-9 in the growth and cholecystokinin-induced intracellular calcium signaling of cultured interstitial cells of Cajal.

    No full text
    Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract and loss of ICC is associated with many GI motility disorders. Previous studies have shown that ICC have the capacity to regenerate or restore, and several growth factors are critical to their growth, maintenance or regeneration. The present study aimed to investigate the roles of interleukin-9 (IL-9) in the growth, maintenance and pacemaker functions of cultured ICC. Here, we report that IL-9 promotes proliferation of ICC, and culturing ICC with IL-9 enhances cholecystokinin-8-induced Ca²⁺ transients, which is probably caused by facilitating maintenance of ICC functions under culture condition. We also show co-localizations of cholecystokinin-1 receptor and IL-9 receptor with c-kit by double-immunohistochemical labeling. In conclusion, IL-9 can promote ICC growth and help maintain ICC functions; IL-9 probably performs its functions via IL-9 receptors on ICC
    corecore