3 research outputs found

    Growth Of Carbon Nanostructures By Thermal Chemical Vapor Deposition Via Metal Catalysis

    No full text
    Multiwall carbon nanotubes (MWCNTs), carbon nanofibers (CNFs) and carbon nanosprings (CNCs) were grown by changing the experimental conditions of the thermal chemical vapor deposition process. These experiments were performed using a tubular furnace and methane or acetylene as carbon feedstock gases. Thin films of Ni, Fe or Cu were deposited onto a SiO2/Si substrate and employed as catalysts. The effect of the growth temperature, metal catalyst and carbon gas precursor on the final carbon nanoestructured material was studied by scanning electron microscopy and Raman spectroscopy.PV 2005-08311320Sinnott, S.B., Andrews, R., (2001) Critical Reviews in Solid State and Materials Science, 26, p. 145Terrones, M., (2004) International Materials Reviews, 49, p. 325Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E., (2004) Philosophical Transactions of Royal Society of London A, 362, p. 2065Huang, S., Dai, L., (2002) Journal of Nanoparticle Research, 4, p. 145Huh, Y., Lee, J.Y., Cheon, J., Hong, Y.K., Koo, J.Y., Lee, T.J., Lee, C.J., (2003) Journal of Materials Chemistry, 13, p. 2297Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, C., Roy, D., Milne, W.I., (2001) Journal of Applied Physics, 90, p. 5308Makris, Th.D., Giorgi, R., Lisi, N., Pilloni, L., Salernitano, E., Sarto, F., Alvisi, M., (2004) Diamond and Related Materials, 13, p. 305Moshkalyov, S.A., Moreau, A.L.D., Guttiérrez, H.R., Cotta, M.A., Swart, J.W., (2004) Materials Science and Engineering B, 112, p. 147Dymont, V.P., Samtsov, M.P., Nekrashevich, E.M., (2000) Technical Physics, 45, p. 905De Los Arcos, T., Gamier, M.G., Oelhafen, P., Mathys, D., Seo, J.W., Domingo, C., García-Ramos, J.V., Sánchez-Cortés, S., (2004) Carbon, 42, p. 187Yao, Y., Falk, L.K.L., Morjan, R.E., Nerushev, O.A., Campbell, E.E.B., (2004) Journal of Material Science: Materials in Electronics, 15, p. 533Bertoni, G., Cepek, C., Romanato, F., Casari, C.S., Li Bassi, A., Bottani, C.E., Sancrotti, M., (2004) Carbon, 42, p. 423Yen, J.H., Leu, I.C., Lin, C.C., Hon, M.H., (2004) Diamond and Related Materials, 13, p. 1237Siegal, M.P., Overmyer, D.L., Kaatz, F.H., (2004) Applied Physics Letters, 84, p. 5156Choi, G.S., Cho, Y.S., Hong, S.Y., Park, J.B., Son, K.H., Kim, D.J., (2002) Journal of Applied Physics, 91, p. 3847Jang, Y.-T., Ahn, J.-H., Lee, Y.-H., Ju, B.-K., (2003) Chemical Physics Letters, 372, p. 74

    Study Of Carbon Nanotubes Growth By Atmospheric Pressure Chemical Vapor Deposition

    No full text
    Multi-wall carbon nanotubes (MWCNTs) growth was performed by thermal chemical vapor deposition using a tubular furnace and methane as carbon feedstock gas. Different metals such as Ni and Fe were employed as catalysts supported onto a SiO 2/Si substrate. The influence of H 2:CH 4 ratio, NH 3 gas, and temperature on the CNTs growth was also investigated. SEM images showed that nickel particles larger than 100 nm have a tendency to form CNTs with metal on both ends suggesting a growth mechanism composed by both tip and base growth models. CNTs grown using Fe films showed a similar behavior.3163168Postma, H.W.Ch., Teepen, T., Yao, Z., Grifoni, M., (2001) C. Dekker, Science, 293, p. 76Ohno, Y., Iwatsuki, S., Hiraoka, T., Okazaki, T., Kishimoto, S., Maezawa, K., Shinohara, H., Mizutani, T., (2003) Jpn. J. Appl. Phys., 42, p. 4116Matsumoto, K., Kinosita, S., Gotoh, Y., Uchiyama, T., Manalis, S., Quate, C., (2001) Appl. Phys. Lett., 78, p. 539Wong, Y.M., Kang, W.P., Davidson, J.L., Wisitsora-At, A., Soh, K.L., Fisher, T., (2003) J. Vac. Sci. Technol. B, 21, p. 391Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A., (2000) Adv. Mater., 12, p. 750Helveg, S., López-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, C.R., Ablid-Pedersen, F., Norskov, J.K., (2004) Nature, 427, p. 426Nerushev, O.A., Dittmar, S., Morjan, R.-E., Rohmund, F., Campbell, E.E.B., (2003) J. Appl. Phys., 93, p. 4185Zaretskiy, S.N., Hong, Y.-K., Ha, D.H., Yoon, J.-H., Cheon, J., Koo, J.-Y., (2003) Chem. Phys. Lett., 372, p. 300Choi, G.S., Cho, Y.S., Hong, S.Y., Park, J.B., Son, K.H., Kim, D.J., (2002) J. Appl. Phys., 91, p. 3847Hornyak, G.L., Grigorian, L., Dillon, A.C., Parilla, P.A., Jones, K.M., Heben, M.J., (2002) J. Phys. Chem. B, 106, p. 2821Cheung, C.L., Kurtz, A., Park, H., Lieber, C.M., (2002) J. Phys. Chem. B, 106, p. 2429Kukovitsky, E.F., L'vov, S.G., Sainov, N.A., Shustov, V.A., Chernozatonskii, L.A., (2002) Chem. Phys. Lett., 355, p. 497Jang, Y.-T., Ahn, J.-H., Lee, Y.-H., Ju, B.-K., (2003) Chem. Phys. Lett., 372, p. 745Joselevish, E., Lieber, C.M., (2002) Nano Lett., 2, p. 113
    corecore