10,290 research outputs found

    Constraints on the duality relation from ACT cluster data

    Full text link
    The cosmic distance-duality relation (CDDR), dL(z)(1+z)2/dA(z)=ηd_L(z) (1 + z)^{2}/d_{A}(z) = \eta, where η=1\eta = 1 and dL(z)d_L(z) and dA(z)d_A(z) are, respectively, the luminosity and the angular diameter distances, holds as long as the number of photons is conserved and gravity is described by a metric theory. Testing such hypotheses is, therefore, an important task for both cosmology and fundamental physics. In this paper we use 91 measurements of the gas mass fraction of galaxy clusters recently reported by the Atacama Cosmology Telescope (ACT) survey along with type Ia supernovae observations of the Union2.1 compilation to probe a possible deviation from the value η=1\eta = 1. Although in agreement with the standard hyphothesis, we find that this combination of data tends to favor negative values of η\eta which might be associated with some physical processes increasing the number of photons and modifying the above relation to dL<(1+z)2dAd_L < (1+z)^2d_A.Comment: 4 pages, 2 figures, 2 table

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200

    Generalized Chaplygin gas with α=0\alpha = 0 and the ΛCDM\Lambda CDM cosmological model

    Full text link
    The generalized Chaplygin gas model is characterized by the equation of state p=−Aραp = - \frac{A}{\rho^\alpha}. It is generally stated that the case α=0\alpha = 0 is equivalent to a model with cosmological constant and dust (ΛCDM\Lambda CDM). In this work we show that, if this is true for the background equations, this is not true for the perturbation equations. Hence, the mass spectrum predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra
    • 

    corecore