16,092 research outputs found

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either n/k\left\lfloor n/k \right\rfloor or n/k\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Polynomial Realization of sq(2)s\ell_q(2) and Fusion Rules at Exceptional Values of qq

    Full text link
    Representations of the sq(2)s\ell_q(2) algebra are constructed in the space of polynomials of real (complex) variable for qN=1q^N=1. The spin addition rule based on eigenvalues of Casimir operator is illustrated on few simplest cases and conjecture for general case is formulated

    The 1/N Expansion in Noncommutative Quantum Mechanics

    Full text link
    We study the 1/N expansion in noncommutative quantum mechanics for the anharmonic and Coulombian potentials. The expansion for the anharmonic oscillator presented good convergence properties, but for the Coulombian potential, we found a divergent large N expansion when using the usual noncommutative generalization of the potential. We proposed a modified version of the noncommutative Coulombian potential which provides a well-behaved 1/N expansion.Comment: v2: resided version, to appear in PRD, 18 pages, 4 figure

    Método de obtenção qualificada de fenótipos visando à avaliação de genótipos bovinos resistentes ao carrapato Rhipicephalus (Boophilus) microplus.

    Get PDF
    Formação de grupos de manejo; Determinação correta do momento da mensuração da carga parasitária; Controle parasitário durante o período de avaliação; Padronização da técnica de contagem de carrapatos; Registro de dados; Análise dos dados.bitstream/item/31735/1/CO-75-online.pd

    Effective models of quantum gravity induced by Planck scale modifications in the covariant quantum algebra

    Get PDF
    In this paper we introduce a modified covariant quantum algebra based in the so-called Quesne-Tkachuk algebra. By means of a deformation procedure we arrive at a class of higher derivative models of gravity. The study of the particle spectra of these models reveals an equivalence with the physical content of the well-known renormalizable and super-renormalizable higher derivative gravities. The particle spectrum exhibits the presence of spurious complex ghosts and, in light of this problem, we suggest an interesting interpretation in the context of minimal length theories. Also, a discussion regarding the non-relativistic potential energy is proposed.Comment: Small corrections were made; improved figures; results unchanged; published versio

    Deciphering M-T diagram of shape memory Heusler alloys: reentrance, plateau and beyond

    Full text link
    We present our recent results on temperature behaviour of magnetization observed in Ni_47Mn_39In_14 Heusler alloys. Three regions can be distinguished in the M-T diagram: (I) low temperature martensitic phase (with the Curie temperature T_CM = 140 K), (II) intermediate mixed phase (with the critical temperature T_MS = 230 K) exhibiting a reentrant like behavior (between T_CM and T_MS) and (III) high temperature austenitic phase (with the Curie temperature T_CA = 320 K) exhibiting a rather wide plateau region (between T_MS and T_CA). By arguing that powerful structural transformations, causing drastic modifications of the domain structure in alloys, would also trigger strong fluctuations of the order parameters throughout the entire M-T diagram, we were able to successfully fit all the data by incorporating Gaussian fluctuations (both above and below the above three critical temperatures) into the Ginzburg-Landau scenario

    Radiative Corrections to the Aharonov-Bohm Scattering

    Full text link
    We consider the scattering of relativistic electrons from a thin magnetic flux tube and perturbatively calculate the order α\alpha, radiative correction, to the first order Born approximation. We show also that the second order Born amplitude vanishes, and obtain a finite inclusive cross section for the one-body scattering which incorporates soft photon bremsstrahlung effects. Moreover, we determine the radiatively corrected Aharonov-Bohm potential and, in particular, verify that an induced magnetic field is generated outside of the flux tube.Comment: 14 pages, revtex, 3 figure
    corecore