24,226 research outputs found
Plastic Deformation of 2D Crumpled Wires
When a single long piece of elastic wire is injected trough channels into a
confining two-dimensional cavity, a complex structure of hierarchical loops is
formed. In the limit of maximum packing density, these structures are described
by several scaling laws. In this paper it is investigated this packing process
but using plastic wires which give origin to completely irreversible structures
of different morphology. In particular, it is studied experimentally the
plastic deformation from circular to oblate configurations of crumpled wires,
obtained by the application of an axial strain. Among other things, it is shown
that in spite of plasticity, irreversibility, and very large deformations,
scaling is still observed.Comment: 5 pages, 6 figure
Structural properties of crumpled cream layers
The cream layer is a complex heterogeneous material of biological origin
which forms spontaneously at the air-milk interface. Here, it is studied the
crumpling of a single cream layer packing under its own weight at room
temperature in three-dimensional space. The structure obtained in these
circumstances has low volume fraction and anomalous fractal dimensions. Direct
means and noninvasive NMR imaging technique are used to investigate the
internal and external structure of these systems.Comment: 9 pages, 4 figures, accepted in J. Phys. D: Appl. Phy
Integrable Field Theories with Defects
The structure of integrable field theories in the presence of defects is
discussed in terms of boundary functions under the Lagrangian formalism.
Explicit examples of bosonic and fermionic theories are considered. In
particular, the boundary functions for the super sinh-Gordon model is
constructed and shown to generate the Backlund transformations for its soliton
solutions.Comment: talk presented at the XVth International Colloquium on Integrable
Systems and Quantum Symmetries, to appear in Czechoslovak Journal of Physics
(2006
On the properties of the interstellar medium in extremely metal-poor blue compact dwarf galaxies: GMOS-IFU spectroscopy and SDSS photometry of the double-knot galaxy HS 2236+1344
The main goal of this study is to carry out a spatially resolved
investigation of the warm interstellar medium (ISM) in the extremely metal-poor
Blue Compact Dwarf (BCD) galaxy HS 2236+1344. Special emphasis is laid on the
analysis of the spatial distribution of chemical abundances, emission-line
ratios and kinematics of the ISM, and to the recent star-forming activity in
this galaxy. This study is based on optical integral field unit spectroscopy
data from Gemini Multi-Object Spectrograph at the Gemini North telescope and
archival Sloan Digital Sky Survey images. The data were obtained in two
different positions across the galaxy, obtaining a total 4 arcsec X 8 arcsec
field which encompasses most of its ISM. Emission-line maps and broad-band
images obtained in this study indicate that HS 2236+1344 hosts three Giant HII
regions. Our data also reveal some faint curved features in the BCD periphery
that might be due to tidal perturbations or expanding ionized-gas shells. The
ISM velocity field shows systematic gradients along the major axis of the BCD,
with its south-eastern and north-western half differing by ~80 km/s in their
recessional velocity. The Ha and Hb equivalent width distribution in the
central part of HS 2236+1344 is consistent with a very young (~3 Myr) burst.
Our surface photometry analysis indicates that the ongoing starburst provides
~50% of the total optical emission, similar to other BCDs. It also reveals an
underlying lower-surface brightness component with moderately red colors, which
suggest that the galaxy has undergone previous star formation. We derive an
integrated oxygen abundance of 12+log(O/H)=7.53\pm0.06 and a nitrogen-to-oxygen
ratio of log(N/O)=-1.57\pm0.19. Our results are consistent, within the
uncertainties, with a homogeneous distribution of oxygen and nitrogen within
the ISM of the galaxy. (abridged)Comment: 15 pages, 16 figures, accepted for publication in A&
Gauge Invariance and Fractional Statistics
We present a new -dimensional field theory showing exotic statistics
and fractional spin. This theory is achieved through a redefinition of the
gauge field . New properties are found. Another way to implement the
field redefinition is used with the same results obtained.Comment: 5 page
Canonical Quantization of the Maxwell-Chern-Simons Theory in the Coulomb Gauge
The Maxwell-Chern-Simons theory is canonically quantized in the Coulomb gauge
by using the Dirac bracket quantization procedure. The determination of the
Coulomb gauge polarization vector turns out to be intrincate. A set of quantum
Poincar\'e densities obeying the Dirac-Schwinger algebra, and, therefore, free
of anomalies, is constructed. The peculiar analytical structure of the
polarization vector is shown to be at the root for the existence of spin of the
massive gauge quanta.The Coulomb gauge Feynman rules are used to compute the
M\"oller scattering amplitude in the lowest order of perturbation theory. The
result coincides with that obtained by using covariant Feynman rules. This
proof of equivalence is, afterwards, extended to all orders of perturbation
theory. The so called infrared safe photon propagator emerges as an effective
propagator which allows for replacing all the terms in the interaction
Hamiltonian of the Coulomb gauge by the standard field-current minimal
interaction Hamiltonian.Comment: 21 pages, typeset in REVTEX, figures not include
- …