30 research outputs found

    Steps towards the development of an experimentally verified simulation of pool nucleate boiling on a silicon wafer with artificial sites

    Get PDF
    Nucleate boiling is a very effective heat transfer cooling process, used in numerous industrial applications. Despite intensive research over decades, a reliable model of nucleate pool boiling is still not available. This paper presents a numerical and experimental investigation of nucleate boiling from artificial nucleation sites. The numerical investigation described in the first section of the paper is carried out by a hybrid mechanistic numerical code first developed at the University of Ljubljana to simulate the temperature field in a heated stainless steel plate with a large number of nucleation sites during pool boiling of water at atmospheric pressure. It is now being redeveloped to interpret experiments on pool boiling at artificial sites on a silicon plate and as a design tool to investigate different arrangements of sites to achieve high heat fluxes. The code combines full simulation of the temperature field in the solid wall with simplified models or correlations for processes in the liquid-vapour region. The current capabilities and limitations of the code are reviewed and improvements are discussed. Examples are given of the removal of computational constraints on the activation of sites in close proximity and improvements to the bubble growth model. Preliminary simulations are presented to compare the wall conditions to be used in the experiments on silicon at Edinburgh University with the conditions in current experiments on thin metal foils at Ljubljana. An experimental rig for boiling experiments with artificial cavities on a 0.38 mm thick silicon wafer immersed in FC-72, developed at Edinburgh University, is described in the second part of the paper

    Study of thermal behavior of microlayer under vapor bubble at liquid boiling

    Full text link
    The results of experimental study of evolution of temperature fields under single vapor bubble obtained by high-speed infrared thermometry with high spatial resolution (13 μm) are presented in this paper. The data were obtained at pool boiling of saturated ethanol and deionized water at atmospheric pressure. Reconstruction of local instantaneous heat flux distribution on the heater surface was carried out with the use of numerical simulation. It is shown that maximal local heat flux was observed in the microlayer region on the bubble growth stage and reached the value an order of magnitude greater than the input heat flux. Based on the results of experimental and numerical researches the estimations of the microlayer thickness were carried out at pool boiling of water and ethanol, which are in good agreement with the experimental data presented in the literature and obtained using laser interferometry

    Effect of nucleation cavities on enhanced boiling heat transfer in microchannels

    No full text
    Boiling instabilities, high temperatures of the onset of boiling (ONB), and early transition to dryout are some of the insufficiently resolved issues of flow boiling in microchannels. This article addresses the flow boiling challenges with the incorporation of flow restrictors to reduce the boiling instabilities and hinder vapor backflows. In addition, the temperature of the ONB was lowered and the heat transfer coefficient was increased during boiling with the fabrication of potential nucleation cavities in the microchannel walls and bottom. Experiments were conducted with degassed double-distilled water in arrays of microchannels with the hydraulic diameter ranging from 25 to 80 µm, whereas the nucleation cavities characteristic sizes varied from 2 to 12 µm. The temperatures of the ONB were up to 35 K lower in the microchannel array with properly sized nucleation cavities compared to arrays of microchannels, in which the etched nucleation cavities were less suitable. The combined effect of fabricated nucleation cavities and interconnected microchannels increased the heat transfer coefficient from three to 10 times depending on the size of the etched nucleation cavities and the transferred heat flux in the microchannel arrays

    Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels

    No full text
    Boiling experiments of pure water, aqueous n-butanol solutions and pure butanol were conducted in arrays of parallel microchannels with a cross-section of 25 × 25 μm and 50 × 50 μm. The introduction of 2% and 6% n-butanol solutions into microchannels with the mass fluxes ranging from 83 kg/m2 s to 208 kg/m2 s demonstrated an enhanced heat transfer during boiling compared to pure water and pure butanol. Both concentrations of butanol lowered the maximum temperature measured during boiling in the microchannel test section for approximately 10 K and 30 K compared to pure water and pure butanol, respectively. High-speed visualization, measurements of the contact angles and analysis of the surface roughness indicated that enhanced heat transfer originates from the improved wettability of the butanol solutions during boiling in microchannels, which is directly related to the positive surface tension gradient and the Marangoni effect. The self-rewetting property of the butanol solutions stimulated the formation of a well pronounced annular flow, enhanced the heat transfer and substantially lowered the temperatures measured in the microchannels during boiling

    Boiling of water and FC-72 in microchannels enhanced with novel features

    No full text
    A microchannel test section comprised of parallel square microchannels with a 25 × 25 μm and 50 × 50 μm cross section was manufactured. Boiling of perfluorinated dielectric fluid FC-72 and water in microchannels was studied. Troublesome occurrences associated with flow boiling in microchannels were reduced or eliminated with inlet/outlet restrictors, inlet/outlet manifolds and potential nucleation cavities incorporated in the array of microchannels. The gradual reduction of channel cross section in the manifolds ensured a uniform distribution of the working fluid among the microchannels. The flow restrictors provided a higher upstream pressure drop in comparison with the downstream pressure drop which favors vapor flow in the downstream direction and consequentially suppresses the vapor backflow present in flow boiling. The superheat of the microchannel wall necessary for the onset of boiling was decreased significantly with the incorporation of properly sized artificial cavities. Experimental results confirmed the benefits of the etched features, as there was (i) an even working fluid distribution (ii) without dominating backflows of vapor (iii) at a low temperature of the onset of boiling. Bubble growths as well as other events in the microchannels were visualized with a high-speed imaging system which captured images at over 87,000 frames per second. Results exhibit boiling hysteresis dependence of the working fluid and its mass flux through the microchannels. The temperature of the onset of boiling is highly dependent on the working fluid, microchannel size and its roughness

    Product identification in industrial batch fermentation using a variable forgetting factor

    No full text
    For reliable operation and the optimization of production, industrial fermentation processes require appropriate tools for monitoring the process in real time. This work presents the structure and operation of a soft sensor for the on-line monitoring of biomass and product concentration during salinomycin and bacitracin fermentation in an industrial, 80-m3 batch reactor; moreover it provides a tool for evaluation of batch production verified in industrial application. The process estimation algorithm consists of decoupled growth and product models, which ensures an unbiased convergence of the estimator and the robustness of the model. The production of secondary metabolites is described with a non-structured model upgraded with a variable forgetting factor that demonstrated a successful estimation of the non-measured parameters and states of this highly interactive and interlinked system with complex dynamics. The possibility of using various input signals in product identification yields independent soft sensors. This serves to improve the reliability of the predictions, mutual sensor control and enables the detection of irregularities in the fermentation process before the broth becomes useless
    corecore