3,408 research outputs found

    Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field

    Full text link
    We study the local disorder in the deformation of amorphous materials by decomposing the particle displacements into a continuous, inhomogeneous field and the corresponding fluctuations. We compare these fields to the commonly used non-affine displacements in an elastically deformed 2D Lennard-Jones glass. Unlike the non-affine field, the fluctuations are very localized, and exhibit a much smaller (and system size independent) correlation length, on the order of a particle diameter, supporting the applicability of the notion of local "defects" to such materials. We propose a scalar "noise" field to characterize the fluctuations, as an additional field for extended continuum models, e.g., to describe the localized irreversible events observed during plastic deformation.Comment: Minor corrections to match the published versio

    Domino: exploring mobile collaborative software adaptation

    Get PDF
    Social Proximity Applications (SPAs) are a promising new area for ubicomp software that exploits the everyday changes in the proximity of mobile users. While a number of applications facilitate simple file sharing between co–present users, this paper explores opportunities for recommending and sharing software between users. We describe an architecture that allows the recommendation of new system components from systems with similar histories of use. Software components and usage histories are exchanged between mobile users who are in proximity with each other. We apply this architecture in a mobile strategy game in which players adapt and upgrade their game using components from other players, progressing through the game through sharing tools and history. More broadly, we discuss the general application of this technique as well as the security and privacy challenges to such an approach

    A Comparison of Blocking Methods for Record Linkage

    Full text link
    Record linkage seeks to merge databases and to remove duplicates when unique identifiers are not available. Most approaches use blocking techniques to reduce the computational complexity associated with record linkage. We review traditional blocking techniques, which typically partition the records according to a set of field attributes, and consider two variants of a method known as locality sensitive hashing, sometimes referred to as "private blocking." We compare these approaches in terms of their recall, reduction ratio, and computational complexity. We evaluate these methods using different synthetic datafiles and conclude with a discussion of privacy-related issues.Comment: 22 pages, 2 tables, 7 figure

    Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses

    Get PDF
    Spatial correlations of microscopic fluctuations are investigated via real-space experiments and computer simulations of colloidal glasses under steady shear. It is shown that while the distribution of one-particle fluctuations is always isotropic regardless of the relative importance of shear as compared to thermal fluctuations, their spatial correlations show a marked sensitivity to the competition between shear-induced and thermally activated relaxation. Correlations are isotropic in the thermally dominated regime, but develop strong anisotropy as shear dominates the dynamics of microscopic fluctuations. We discuss the relevance of this observation for a better understanding of flow heterogeneity in sheared amorphous solids.Comment: 6 pages, 4 figure

    Quantum key distribution without alternative measurements

    Full text link
    Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator.Comment: REVTeX, 5 pages, 2 figures. Published version with some comment

    Quantum Games and Quantum Strategies

    Get PDF
    We investigate the quantization of non-zero sum games. For the particular case of the Prisoners' Dilemma we show that this game ceases to pose a dilemma if quantum strategies are allowed for. We also construct a particular quantum strategy which always gives reward if played against any classical strategy.Comment: 4 pages, 4 figures, typographic sign error in the definition of the operator J correcte

    Stress response inside perturbed particle assemblies

    Full text link
    The effect of structural disorder on the stress response inside three dimensional particle assemblies is studied using computer simulations of frictionless sphere packings. Upon applying a localised, perturbative force within the packings, the resulting {\it Green's} function response is mapped inside the different assemblies, thus providing an explicit view as to how the imposed perturbation is transmitted through the packing. In weakly disordered arrays, the resulting transmission of forces is of the double-peak variety, but with peak widths scaling linearly with distance from the source of the perturbation. This behaviour is consistent with an anisotropic elasticity response profile. Increasing the disorder distorts the response function until a single-peak response is obtained for fully disordered packings consistent with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte

    Quantum Gambling Using Three Nonorthogonal States

    Full text link
    We provide a quantum gambling protocol using three (symmetric) nonorthogonal states. The bias of the proposed protocol is less than that of previous ones, making it more practical. We show that the proposed scheme is secure against non-entanglement attacks. The security of the proposed scheme against entanglement attacks is shown heuristically.Comment: no essential correction, 4 pages, RevTe

    A random quantum key distribution by using Bell states

    Full text link
    We proposed a new scheme for quantum key distribution based on entanglement swapping. By this protocol \QTR{em}{Alice} can securely share a random quantum key with \QTR{em}{Bob}, without transporting any particle.Comment: Accepted by J. Opt. B: Quantum Semiclass. Op

    Dynamical Decoupling of Open Quantum Systems

    Get PDF
    We propose a novel dynamical method for beating decoherence and dissipation in open quantum systems. We demonstrate the possibility of filtering out the effects of unwanted (not necessarily known) system-environment interactions and show that the noise-suppression procedure can be combined with the capability of retaining control over the effective dynamical evolution of the open quantum system. Implications for quantum information processing are discussed.Comment: 4 pages, no figures; Plain ReVTeX. Final version to appear in Physical Review Letter
    • 

    corecore