30 research outputs found

    Caenorhabditis elegans Battling Starvation Stress: Low Levels of Ethanol Prolong Lifespan in L1 Larvae

    Get PDF
    The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%); higher concentrations to 68 mM (0.4%) did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response

    Bicentric bipolar hip prosthesis: A radiological study of movement at the interprosthetic joint

    No full text
    Background: The bipolar hip prostheses after some time functions as a unipolar device. There is a need to change the design of bipolar hip prostheses to make it function as a bipolar device over a prolonged period of time. A bicentric bipolar hip prosthesis was used as an implant for various conditions of the hip. We evaluated the movement of this newly developed prosthesis at the interprosthetic joint radiologically at periodic intervals. Materials and Methods: Fifty two cases were operarted with the Bicentric bipolar prosthesis for indications like fracture neck of femur and various other diseases of the hip and were followed up with serial radiographs at periodic intervals to evaluate, what fraction of the total abduction at the hip was occurring at the interprosthetic joint. Results: In cases of intracapsular fracture neck of femur, the percentage of total abduction occurring at the interprosthetic joint at 3 months follow-up was 33.74% (mean value of all the patients), which fell to 25.66% at 1.5 years. In indications for bipolar hemireplacement other than fracture neck of femur, the percentage of total abduction occurring at the interprosthetic joint at 3 months follow-up was 71.71% (mean value) and at 1.5 years it was 67.52%. Conclusion: This study shows the relative preservation of inner bearing movement in the bipolar hip prosthesis with time probably due its refined design. Further refinements are needed to make the prosthesis work better in patients of intracapsular fracture neck femur

    Biological iron-sulfur storage in a thioferrateprotein nanoparticle

    No full text
    Iron-sulfur clusters are ubiquitous in biology and function in electron transfer and catalysis. They are assembled from iron and cysteine sulfur on protein scaffolds. Iron is typically stored as iron oxyhydroxide, ferrihydrite, encapsulated in 12 nm shells of ferritin, which buffers cellular iron availability. Here we have characterized IssA, a protein that stores iron and sulfur as thioferrate, an inorganic anionic polymer previously unknown in biology. IssA forms nanoparticles reaching 300 nm in diameter and is the largest natural metalloprotein complex known. It is a member of a widely distributed protein family that includes nitrogenase maturation factors, NifB and NifX. IssA nanoparticles are visible by electron microscopy as electron-dense bodies in the cytoplasm. Purified nanoparticles appear to be generated from 20 nm units containing ~6,400 Fe atoms and ~170 IssA monomers. In support of roles in both iron-sulfur storage and cluster biosynthesis, IssA reconstitutes the [4Fe-4S] cluster in ferredoxin in vitro
    corecore