44 research outputs found

    Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies

    Get PDF
    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection

    Earthquake nucleation in the lower crust by local stress amplification

    Get PDF
    Deep intracontinental earthquakes are poorly understood, despite their potential to cause significant destruction. Although lower crustal strength is currently a topic of debate, dry lower continental crust may be strong under high-grade conditions. Such strength could enable earthquake slip at high differential stress within a predominantly viscous regime, but requires further documentation in nature. Here, we analyse geological observations of seismic structures in exhumed lower crustal rocks. A granulite facies shear zone network dissects an anorthosite intrusion in Lofoten, northern Norway, and separates relatively undeformed, microcracked blocks of anorthosite. In these blocks, pristine pseudotachylytes decorate fault sets that link adjacent or intersecting shear zones. These fossil seismogenic faults are rarely >15 m in length, yet record single-event displacements of tens of centimetres, a slip/length ratio that implies >1 GPa stress drops. These pseudotachylytes represent direct identification of earthquake nucleation as a transient consequence of ongoing, localised aseismic creep

    Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China

    No full text
    The Dashui gold deposit is a structurally controlled, Carlin-type gold deposit hosted by recrystallised limestone in the West Qinling Orogen of Central China. The major, structurally late east-trending Dashui Fault forms the hanging wall to the gold mineralisation at the Dashui mine and defines the contact between Middle Triassic limestone and a steeply dipping overlying succession of Middle Triassic argillaceous limestone, dolomite, and sandstone. Multiple carbonate veins and large-scale supergene enrichment, represented by hematite, goethite, limonite and jarosite, characterise the deposit. Detailed geochronological investigation using zircon SHRIMP U-Pb dating reveals that volcanic rocks closely associated with the Dashui gold deposit were synchronous with the Ge’erkuohe Granite and pre-date mineralisation. The igneous dyke sample from the hanging wall has the same U-Pb zircon age as the footwall, ca. 213 Ma. (U-Th)/He thermochronology on dykes in the hanging wall and footwall of the Dashui Fault yields identical (U-Th)/He zircon ages of ca. 210 Ma but distinct (U-Th)/He apatite ages of ca. 136 and 211 Ma, respectively.Therefore, the hanging wall and footwall are interpreted as having distinct post-mineralisation exhumation histories. Reverse fault movement exhumed the hanging wall ~2 to 4 km since the Late Triassic with the main component of faulting taking place between the Late Triassic and Early Cretaceous. These relationships suggest a Late Triassic to Early Cretaceous age for the primary gold mineralisation at the Dashui gold deposit, with the corollary that any ‘missing portion’ of the deposit, previously hypothesised to exist in the hanging wall of the Dashui Fault, has been eroded away. The mineralisation in the footwall may have been supergene enriched soon after the primary mineralisation was emplaced, because it has been located at shallow depth since the Late Triassic. Semi-quantitative results obtained in this study also constrain the maximum depth of formation of the Dashui gold at no more than 2 km
    corecore