41 research outputs found

    Preliminary genetic evidence of two different populations of Opisthorchis viverrini in Lao PDR

    Get PDF
    Opisthorchis viverrini is a major public health concern in Southeast Asia. Various reports have suggested that this parasite may represent a species complex, with genetic structure in the region perhaps being dictated by geographical factors and different species of intermediate hosts. We used four microsatellite loci to analyze O. viverrini adult worms originating from six species of cyprinid fish in Thailand and Lao PDR. Two distinct O. viverrini populations were observed. In Ban Phai, Thailand, only one subgroup occurred, hosted by two different fish species. Both subgroups occurred in fish from That Luang, Lao PDR, but were represented to very different degrees among the fish hosts there. Our data suggest that, although geographical separation is more important than fish host specificity in influencing genetic structure, it is possible that two species of Opisthorchis, with little interbreeding, are present near Vientiane in Lao PDR

    A structural annotation resource for the selection of putative target proteins in the malaria parasite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, various structural features in <it>Plasmodium falciparum </it>proteins complicate the experimental determination of protein structures. Limited similarity to proteins in the Protein Data Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale structural annotation of <it>P. falciparum </it>proteins. Additionally, the annotation of a range of structural features facilitates the identification of suitable targets for experimental and computational studies.</p> <p>Methods</p> <p>An integrated structural annotation system was developed and applied to <it>P. falciparum</it>, <it>Plasmodium vivax </it>and <it>Plasmodium yoelii</it>. The annotation included searches for sequence similarity, patterns and domains in addition to the following predictions: secondary structure, transmembrane helices, protein disorder, low complexity, coiled-coils and small molecule interactions. Subsequently, candidate proteins for further structural studies were identified based on the annotated structural features.</p> <p>Results</p> <p>The annotation results are accessible through a web interface, enabling users to select groups of proteins which fulfil multiple criteria pertaining to structural and functional features <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Analysis of features in the <it>P. falciparum </it>proteome showed that protein-interacting proteins contained a higher percentage of predicted disordered residues than non-interacting proteins. Proteins interacting with 10 or more proteins have a disordered content concentrated in the range of 60–100%, while the disorder distribution for proteins having only one interacting partner, was more evenly spread.</p> <p>Conclusion</p> <p>A series of <it>P. falciparum </it>protein targets for experimental structure determination, comparative modelling and <it>in silico </it>docking studies were putatively identified. The system is available for public use, where researchers may identify proteins by querying with multiple physico-chemical, sequence similarity and interaction features.</p

    Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings

    Get PDF
    Introduction of engineered nanoparticles (ENPs) into traditional surface coatings (e.g., paints, lacquers, fillers) may result in new exposures to both workers and consumers and possibly also a new risk to their health. During finishing and renovation, such products may also be a substantial source of exposure to ENPs or aggregates thereof. This study investigates the particle size distributions (5.6 nm–19.8 μm) and the total number of dust particles generated during sanding of ENP-doped paints, lacquers, and fillers as compared to their conventional counterparts. In all products, the dust emissions from sanding were found to consist of five size modes: three modes under 1 μm and two modes around 1 and 2 μm. Corrected for the emission from the sanding machine, the sanding dust, was dominated by 100–300 nm size particles, whereas the mass and surface area spectra were dominated by the micrometer modes. Adding ENPs to the studied products only vaguely affected the geometric mean diameters of the particle modes in the sanding dust when compared to their reference products. However, we observed considerable differences in the number concentrations in the different size modes, but still without revealing a clear effect of ENPs on dust emissions from sanding

    Deletion of a Malaria Invasion Gene Reduces Death and Anemia, in Model Hosts

    Get PDF
    Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite β€˜toxins’ have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Ξ”msp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Ξ”msp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease

    Temperature Tolerance and Stress Proteins as Mechanisms of Invasive Species Success

    Get PDF
    Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed – but largely untested – that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14Β°C and 31Β°C and determining the temperature lethal to 50% of individuals (LT50) after a 24 hour exposure. We found a strong positive relationship between the LT50 and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT50. Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism has facilitated the current success of invasive species and could lead to greater success of invasives than native species as global warming continues

    Effect of a vitamin/mineral supplement on children and adults with autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin/mineral supplements are among the most commonly used treatments for autism, but the research on their use for treating autism has been limited.</p> <p>Method</p> <p>This study is a randomized, double-blind, placebo-controlled three month vitamin/mineral treatment study. The study involved 141 children and adults with autism, and pre and post symptoms of autism were assessed. None of the participants had taken a vitamin/mineral supplement in the two months prior to the start of the study. For a subset of the participants (53 children ages 5-16) pre and post measurements of nutritional and metabolic status were also conducted.</p> <p>Results</p> <p>The vitamin/mineral supplement was generally well-tolerated, and individually titrated to optimum benefit. Levels of many vitamins, minerals, and biomarkers improved/increased showing good compliance and absorption. Statistically significant improvements in metabolic status were many including: total sulfate (+17%, p = 0.001), S-adenosylmethionine (SAM; +6%, p = 0.003), reduced glutathione (+17%, p = 0.0008), ratio of oxidized glutathione to reduced glutathione (GSSG:GSH; -27%, p = 0.002), nitrotyrosine (-29%, p = 0.004), ATP (+25%, p = 0.000001), NADH (+28%, p = 0.0002), and NADPH (+30%, p = 0.001). Most of these metabolic biomarkers improved to normal or near-normal levels.</p> <p>The supplement group had significantly greater improvements than the placebo group on the Parental Global Impressions-Revised (PGI-R, Average Change, p = 0.008), and on the subscores for Hyperactivity (p = 0.003), Tantrumming (p = 0.009), Overall (p = 0.02), and Receptive Language (p = 0.03). For the other three assessment tools the difference between treatment group and placebo group was not statistically significant.</p> <p>Regression analysis revealed that the degree of improvement on the Average Change of the PGI-R was strongly associated with several biomarkers (adj. R<sup>2 </sup>= 0.61, p < 0.0005) with the initial levels of biotin and vitamin K being the most significant (p < 0.05); both biotin and vitamin K are made by beneficial intestinal flora.</p> <p>Conclusions</p> <p>Oral vitamin/mineral supplementation is beneficial in improving the nutritional and metabolic status of children with autism, including improvements in methylation, glutathione, oxidative stress, sulfation, ATP, NADH, and NADPH. The supplement group had significantly greater improvements than did the placebo group on the PGI-R Average Change. This suggests that a vitamin/mineral supplement is a reasonable adjunct therapy to consider for most children and adults with autism.</p> <p>Trial Registration</p> <p><b>Clinical Trial Registration Number: </b><a href="http://www.clinicaltrials.gov/ct2/show/NCT01225198">NCT01225198</a></p

    Interspecific Hybridization and Mitochondrial Introgression in Invasive Carcinus Shore Crabs

    Get PDF
    Interspecific hybridization plays an important role in facilitating adaptive evolutionary change. More specifically, recent studies have demonstrated that hybridization may dramatically influence the establishment, spread, and impact of invasive populations. In Japan, previous genetic evidence for the presence of two non-native congeners, the European green crab Carcinus maenas and the Mediterranean green crab C. aestuarii, has raised questions regarding the possibility of hybridization between these sister species. Here I present analysis based on both nuclear microsatellites and the mitochondrial cytochrome C oxidase subunit I (COI) gene which unambiguously argues for a hybrid origin of Japanese Carcinus. Despite the presence of mitochondrial lineages derived from both C. maenas and C. aestuarii, the Japanese population is panmictic at nuclear loci and has achieved cytonuclear equilibrium throughout the sampled range in Japan. Furthermore, analysis of admixture at nuclear loci indicates dramatic introgression of the C. maenas mitochondrial genome into a predominantly C. aestuarii nuclear background. These patterns, along with inferences drawn from the observational record, argue for a hybridization event pre-dating the arrival of Carcinus in Japan. The clarification of both invasion history and evolutionary history afforded by genetic analysis provides information that may be critically important to future studies aimed at assessing risks posed by invasive Carcinus populations to Japan and the surrounding region

    Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites

    Get PDF
    Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+ influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect

    Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems

    Get PDF
    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration
    corecore