10 research outputs found

    Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Full text link
    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy

    Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction

    No full text
    We introduce and begin a systematic study of sublinearly contracting projections. We give two characterizations of Morse quasi-geodesics in an arbitrary geodesic metric space. One is that they are sublinearly contracting; the other is that they have completely superlinear divergence. We give a further characterization of sublinearly contracting projections in terms of projections of geodesic segments

    Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction

    No full text
    We introduce and begin a systematic study of sublinearly contracting projections. We give two characterizations of Morse quasi-geodesics in an arbitrary geodesic metric space. One is that they are sublinearly contracting; the other is that they have completely superlinear divergence. We give a further characterization of sublinearly contracting projections in terms of projections of geodesic segments

    Negative curvature in graphical small cancellation groups

    No full text
    We use the interplay between combinatorial and coarse geometric versions of negative curvature to investigate the geometry of infinitely presented graphical Gr′(1/6) small cancellation groups. In particular, we characterize their ‘contracting geodesics,’ which should be thought of as the geodesics that behave hyperbolically. We show that every degree of contraction can be achieved by a geodesic in a finitely generated group. We construct the first example of a finitely generated group G containing an element g that is strongly contracting with respect to one finite generating set of G and not strongly contracting with respect to another. In the case of classical C′(1/6) small cancellation groups we give complete characterizations of geodesics that are Morse and that are strongly contracting. We show that many graphical Gr′(1/6) small cancellation groups contain strongly contracting elements and, in particular, are growth tight. We construct uncountably many quasi-isometry classes of finitely generated, torsion-free groups in which every maximal cyclic subgroup is hyperbolically embedded. These are the first examples of this kind that are not subgroups of hyperbolic groups. In the course of our analysis we show that if the defining graph of a graphical Gr′(1/6) small cancellation group has finite components, then the elements of the group have translation lengths that are rational and bounded away from zero
    corecore