10 research outputs found

    Visual Ability and Searching Behavior of Adult Laricobius nigrinus, a Hemlock Woolly Adelgid Predator

    Get PDF
    Very little is known about the searching behavior and sensory cues that Laricobius spp. (Coleoptera: Derodontidae) predators use to locate suitable habitats and prey, which limits our ability to collect and monitor them for classical biological control of adelgids (Hemiptera: Adelgidae). The aim of this study was to examine the visual ability and the searching behavior of newly emerged L. nigrinus Fender, a host-specific predator of the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Phylloxeroidea: Adelgidae). In a laboratory bioassay, individual adults attempting to locate an uninfested eastern hemlock seedling under either light or dark conditions were observed in an arena. In another bioassay, individual adults searching for prey on hemlock seedlings (infested or uninfested) were continuously video-recorded. Beetles located and began climbing the seedling stem in light significantly more than in dark, indicating that vision is an important sensory modality. Our primary finding was that searching behavior of L. nigrinus, as in most species, was related to food abundance. Beetles did not fly in the presence of high A. tsugae densities and flew when A. tsugae was absent, which agrees with observed aggregations of beetles on heavily infested trees in the field. At close range of prey, slow crawling and frequent turning suggest the use of non-visual cues such as olfaction and contact chemoreception. Based on the beetles' visual ability to locate tree stems and their climbing behavior, a bole trap may be an effective collection and monitoring tool

    Potential impact of climate change on whiteflies and implications for the spread of vectored viruses

    Get PDF
    Published online: 31 Oct 2018Whiteflies (Hemiptera: Aleyrodidae) are important insect pests causing serious damage to plants and transmitting hundreds of plant viruses. Climate change is expected to influence life history and trophic interactions among plants, whiteflies and their natural enemies. Here, we review the potential impacts of climate change on whiteflies and the likely consequences for agricultural systems. This review concludes that while climatic stress tends to negatively affect life history traits, the effects differ with the tolerance of the whiteflies and the amount of stress experienced. Whiteflies also differ in their adaptability. Better adapted species will likely experience increased distribution and abundance provided their tolerance limits are not exceeded, while species with lower tolerance and adaptation limits will suffer reduced fitness, which will have overall effects on their distribution and abundance in space and time. The majority of methods used to control whiteflies will still be useful especially if complementary methods are combined for maximum efficacy. Parasitism and predation rates of whitefly natural enemies could increase with temperature within the optimum ranges of the natural enemies, although life history traits and population growth potential are generally maximised below 30 °C. Changes in climatic suitability modifying the distribution and abundance of whiteflies, and environmental suitability for plant viruses, will likely affect epidemics of viral diseases. Greater efforts are required to improve understanding of the complex effects of climate change on multi-species and multi-trophic interactions in the agro-ecological systems inhabited by whiteflies, and to use this new knowledge to develop robust and climate-smart management strategies

    Non-native gall-inducing insects on forest trees:a global review

    No full text
    corecore