62 research outputs found

    Mesenchymal stem cell secretome reduces pain and prevents cartilage damage in a murine osteoarthritis model

    Get PDF
    Mesenchymal stem cells (MSCs) represent a promising biological therapeutic option as an osteoarthritis (OA)-modifying treatment. MSCs secrete factors that can counteract inflammatory and catabolic processes and attract endogenous repair cells. The effects of intra-articular injection of MSC secretome on OA-related pain, cartilage damage, subchondral bone alterations and synovial inflammation were studied in a mouse collagenase-induced OA model. The MSC secretome was generated by stimulating human bone-marrow-derived MSCs with interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα). 54 mice were randomly assigned to injections with i) MSC secretome from 20,000 MSCs, ii) 20,000 MSCs or iii) medium (control). Pain was assessed by hind limb weight distribution. Cartilage damage, subchondral bone volume and synovial inflammation were evaluated by histology. MSC-secretome- and MSC-injected mice showed pain reduction at day 7 when compared to control mice. Cartilage damage was more abundant in the control group as compared to healthy knees, a difference which was not found in knees treated with MSC secretome or MSCs. No effects were observed regarding synovial inflammation, subchondral bone volume or the presence of different macrophage subtypes. Injection of MSC secretome, similarly to injection of MSCs, resulted in early pain reduction and had a protective effect on the development of cartilage damage in a murine OA model. By using the regenerative capacities of the MSC-secreted factors, it will be possible to greatly enhance the standardisation, affordability and clinical translatability of the approach. This way, this biological therapy could evolve towards a true disease-modifying anti-osteoarthritic drug

    Clinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides

    Get PDF
    Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells. Methodology/Prinicipal Findings: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry. Conclusions: SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility

    Get PDF
    BACKGROUND: The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+) the derivative 9+ encodes either the p40((ABL/BCR) )fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96((ABL/BCR) )fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. METHODS: We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. RESULTS: Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. CONCLUSION: Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological counterpart BCR

    Platelet-rich plasma induces post-natal maturation of immature articular cartilage and correlates with LOXL1 activation

    Get PDF
    Platelet-­rich plasma (PRP) is used to stimulate the repair of acute and chronic cartilage damage even though there is no definitive evidence of how this is achieved. Chondrocytes in injured and diseased situations frequently re­ express phenotypic biomarkers of immature cartilage so tissue maturation is a potential pathway for restoration of normal structure and function. We used an in vitro model of growth factor­induced maturation to perform a comparative study in order to determine whether PRP can also induce this specific form of remodeling that is characterised by increased cellular proliferation and tissue stiffness. Gene expression patterns specific for maturation were mimicked in PRP treated cartilage, with chondromodulin, collagen types II/X downregulated, deiodinase II and netrin­1 upregulated. PRP increased cartilage surface cell density 1.5­fold (P < 0.05), confirmed by bromodeoxyuridine incorporation and proportionate increases in proliferating cell nuclear antigen gene expression. Atomic force microscopy analysis of PRP and growth factor treated cartilage gave a 5­fold increase in stiffness correlating with a 10­fold upregulation of lysyl oxidase like­1 gene expression (P < 0.001). These data show PRP induces key aspects of post­natal maturation in immature cartilage and provides the basis to evaluate a new biological rationale for its activity when used clinically to initiate joint repair

    Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions

    Get PDF

    Encapsulation of allogeneic mesenchymal stem cells in alginate extends local presence and therapeutic function

    No full text
    Bone marrow derived mesenchymal stem cells (MSCs) have immunomodulatory and trophic capacities. For therapeutic application in local chronic inflammatory diseases, MSCs, preferably of allogeneic origin, have to retain immunomodulatory properties. This might be achieved by encapsulation of MSCs in a biomaterial that protects them from the host immune system. Most studies investigating the properties of MSCs for therapeutic application use short term cultures of cells in monolayer. Since the physical environment of MSCs can influence their functionality, we evaluated the feasibility of preserving the immunomodulatory properties of MSCs encapsulated in a three-dimensional alginate construct. After 5 weeks of implantation in immunocompetent rats, active allogeneic MSCs encapsulated in alginate were still detectable by Bio Luminescence Imaging and Magnetic Resonance Imaging of luciferase transduced and superparamagnetic iron oxide labelled MSCs. MSCs injected in saline were only detectable up to 1 week after injection. Moreover, the MSCs encapsulated in alginate responded to inflammatory stimuli similarly to MSCs in monolayer culture. In addition, MSC-alginate beads secreted immunomodulatory and trophic factors and inhibited T-cell proliferation after 30 d of in vitro culture. Our data indicate that allogeneic MSCs encapsulated in alginate persist locally and could act as an interactive immunomodulatory or trophic factor release system for several weeks, making this an interesting system to investigate for application in inflammatory disease conditions
    • …
    corecore