43 research outputs found

    Acute Complex Type A Dissection associated with peripheral malperfusion syndrome treated with a staged approach guided by lactate levels

    Get PDF
    Acute type A aortic dissection can be complicated by visceral malperfusion and is associated with a significant surgical morbidity and mortality. We describe a case of successful management of a complex acute type A dissection with mesenteric and lower limb ischemia treated with endovascular thoracic stenting and femoro-femoral crossover bypass grafting followed by aortic arch repair. To accomplish this, we applied a staged therapeutic approach using serial lactate measurements to assess the adequacy of peripheral perfusion and metabolic status prior to surgical repair of the proximal dissection

    Gonad shielding in paediatric pelvic radiography: disadvantages prevail over benefit

    Get PDF
    Objective To re-evaluate gonad shielding in paediatric pelvic radiography in terms of attainable radiation risk reduction and associated loss of diagnostic information. Methods A study on patient dose and the quality of gonad shielding was performed retrospectively using 500 pelvic radiographs of children from 0 to 15 years old. In a subsequent study, 195 radiographs without gonad shielding were included. Patient doses and detriment adjusted risks for heritable disease and cancer were calculated with and without gonad shielding. Results For girls, gonad shields were placed incorrectly in 91% of the radiographs; for boys, in 66%. Without gonad shielding, the hereditary detriment adjusted risk for girls ranged between 0.1?×?10?6 and 1.3?×?10?6 and for boys between 0.3?×?10?6 and 3.9?×?10?6, dependent on age. With shielding, the reduction in hereditary risk for girls was on average 6?±?3% of the total risk of the radiograph, for boys 24?±?6%. Without gonad shielding, the effective dose ranged from 0.008 to 0.098 mSv. Conclusions With modern optimised X-ray systems, the reduction of the detriment adjusted risk by gonad shielding is negligibly small. Given the potential consequences of loss of diagnostic information, of retakes, and of shielding of automatic exposure-control chambers, gonad shielding might better be discontinued.Support TNWApplied Science

    Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    Get PDF
    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome

    The release of leptin and its effect on hormone release from human pituitary adenomas.

    No full text
    BACKGROUND: Leptin is the protein product of the obese gene, known to play an important role in body energy balance. The leptin receptor exists in numerous isoforms, the long isoform being the major form involved in signal transduction. Leptin expression has recently been demonstrated in the human pituitary, both in normal tissue and in pituitary adenomas. The long isoform of the leptin receptor has also been shown to be present in pituitary adenomas; however, contrasting results have been obtained regarding its expression in the normal human pituitary. AIM: The aim of this study was (i) to investigate the presence and pattern of distribution of leptin mRNA and the long isoform of its receptor mRNA in the normal pituitary and in different types of pituitary adenomas with RT-PCR; (ii) to study leptin secretion from human pituitary tumours in culture and (iii) to assess in vitro pituitary hormone release following stimulation with human leptin. RESULTS: Leptin receptor long isoform expression was detected in 2/4 GH-secreting adenomas, 12/17 non-functioning adenomas, 5/9 ACTH-secreting adenomas, 1/2 prolactinomas, 2/2 FSH-secreting adenomas and 5/5 normal pituitaries. The receptor long isoform did not segregate with any particular tumour type, and varying levels of expression were detected between the tissues studied. Leptin mRNA was detected at a low level of expression in 2/7 GH-secreting adenomas, 9/14 non-functioning adenomas, 2/3 ACTH-secreting adenomas, 1/3 prolactinomas and 1/3 FSH-secreting adenomas. We were unable to detect leptin mRNA in any of the five normal pituitaries removed at autopsy; however, immunostaining of a non-tumorous pituitary adjacent to an adenoma removed at transsphenoidal surgery showed scattered leptin positive cells. Culture of pituitary adenomas showed that 16/47 released leptin into the incubation media. Leptin release did not correlate with tumour type or with any of the other pituitary hormones released. In vitro leptin stimulation of pituitary tumours caused stimulation of FSH and alpha-subunit secretion from a non-functioning adenoma and TSH secretion from a somatotroph adenoma. CONCLUSION: We conclude that not only is leptin stored within the pituitary, but it may also be released from pituitary cells and modulate other pituitary hormone secretion. Pituitary leptin may therefore be a novel paracrine regulator of pituitary function
    corecore