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Abstract

Spectrum sensing plays a significant role in enabling utilization of spectrum holes by unlicensed secondary users
(SUs) in cognitive radio networks (CRNs). Most of the related work concerning spectrum sensing has focused on
sensing carried out by incoming secondary users (SUs) aiming at locating spectrum opportunities. However, in order
to appropriately protect returning licensed primary users (PUs), SUs should continuously perform spectrum sensing
during their ongoing transmissions. An important issue associated with the continuous sensing is the false alarm rate
(FAR), which is defined as the average number of false alarms per unit of time and can be modeled by a Poisson
process with Poisson parameter λFAR. In this paper, we address this issue and develop a continuous time Markov chain
(CTMC)-based analytical model to evaluate the effect of the false alarm rate on the performance of CRNs. A major
feature of the proposed analytical framework is that it takes into account the effects of sensing errors by both incoming
SUs looking for free channels to transmit on and the already transmitting SUs expecting the presence of returning PUs.
The analytical model also examines the interference tolerance among PUs and SUs as well as the impact of SUs residual
self-interference. The performance results show that high λFAR can severely degrade PUs performance and reduce the
overall system resource utilization. However, with increasing PU interference tolerance, PUs performance improves as
well. SU residual interference was found to decrease the detection probability resulting in a low PU performance.
Extensive simulations validate the analytical model, demonstrating excellent agreement with the theoretical results.

Keywords: Cognitive radio network, Opportunistic spectrum access, False alarm rate, Markov chain, Spectrum
sensing, Performance analysis

1 Introduction
With today’s inefficient utilization of the scarce radio
spectrum, cognitive radio (CR) [1–3] is becoming an
important tool for solving the problem of spectrum
underutilization. As a result, there has been considerable
research effort focusing on CR techniques that enable
using radio spectrum efficiently. In CR networks (CRNs),
unlicensed secondary users (SUs) employ spectrum sens-
ing [4–6] to discover spectrum holes during the absence of
licensed primary users (PUs) before attempting network
access. Energy detection [7–9] is the simplest method for
detecting the presence of PUs. It is based on calculating
the energy of the received samples which is compared to a
threshold. If the threshold is exceeded, it is decided that a
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signal or signals are present. If the sensed channel is free,
SUs may be allowed to transmit on that channel.
No matter which detection scheme is used for pro-

tecting returning PUs, it will lead to the occurrence of
false detection of returning PUs, i.e., we will erroneously
assume that a PU has returned, when in fact the PU’s
channel is free. A simple way to characterize the occur-
rence of false alarms for already transmitting SUs is to use
the average number of false alarms per a time unit, simi-
lar to the rate parameter of a Poisson process. We call this
parameter the false alarm rate parameter λFAR [10, 11].
It is to be mentioned that in multi-channel systems with
handoff capability (as studied here), an SUmoving from its
current operating channel (for example, due to false detec-
tion of a returning PU) will attempt to locate another free
channel to continue its ongoing data transmission.
To protect reappearing PUs, SUs perform spectrum

sensing on a continuous basis along with data trans-
mission. Figure 1 presents the concept of simultaneous
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Fig. 1 Continuous sensing and data transmission

spectrum sensing and data transmission. When a new SU
arrives at a channel for the first time, it senses the whole
PU channel with a bandwidth W for T1 seconds. After
discovering that the channel is free, the SU starts data
transmission over a bandwidth ofW −WGB −W2. While
the SU is transmitting data over the lower part of the PU
channel, it continuously monitors the PU channel using
the upper part with bandwidthW2 to detect the presence
of a returning PU. A guard band (GB) subchannel is used
to prevent the leakage from SU’s self-interference signal.
The SUmakes sensing decision every T2 seconds. As a PU
reappears (if correctly detected by the SU), the SU ceases
its data transmission and leaves the channel.
Spectrum sensing errors impose several challenges into

the design of CRNs and specially in models that employ
simultaneous spectrum sensing and data transmissions.
For example, the frequent occurrence of false alarm
events is highly undesirable since it makes it challeng-
ing for SUs to fully utilize the spectrum opportunities
and severely degrades their quality of service (QoS). The
results reported in [12] have revealed the importance of
investigating the effect of unnecessary spectrum handoff
due to false alarms during spectrum sensing. Motivated
by these issues, we develop a comprehensive CTMC ana-
lytical framework which models all related sensing factors
that have not been fully accounted for in previous works.
Our model can incorporate the effect of FAR as well as
handling of the effect of the residual self-interference that
is left over after SIC process. To our knowledge, the effect
of the FAR on the operation of CRNs has not been investi-
gated in the literature. The contribution of this paper can
be summarized as follows:

• It motivates and develops a CTMC-based analytical
framework that precisely evaluates the performance
of CRNs. Unlike existing approaches, the proposed
model thoroughly investigates the effect of FARs on
the performance of CRNs. The model also takes into
consideration the SUs residual self-interference as
well as interference tolerance among PUs and SUs.

• It models the occurrence of FAR events as a Poisson
process with parameter λFAR with a theoretical
justification based on a shrinking Bernoulli process
[13].

• It proposes a new performance evaluation measure,
the SU self-termination probability. The proposed
metric can precisely measure the percentage of SU
calls that are terminated because of the FAR
occurrence. The newmetric also allows for measuring
the SUs’ ability of utilizing spectrum opportunities.

• Extensive simulations to validate the theoretical
results.

We believe that the work presented in this paper con-
tributes towards a better understanding and provides a
new insight into the operation of CRNs and can be used
to develop more accurate and realistic CRNs performance
analysis models. The rest of the paper is organized as
follows. Section 2 presents the related work. The sys-
tem model is presented in Section 3. Section 4 contains a
description of the continuous spectrum sensing and data
transmission. Section 5 presents the CTMC-based ana-
lytical framework. In Section 6, we discuss performance
evaluation metrics for the CRN. Section 7 summarizes
results and provides comparison of simulation and theo-
retical results. Finally, Section 8 provides the conclusions
and remarks on future work.

2 Related work
In recent years, several studies has been proposed to
detect returning PUs in CRNs. In [14], the authors inves-
tigate the issues of how to maximize the overall discovery
of opportunities in the licensed channels and how tomini-
mize the delay in locating an idle channel in order to mini-
mize interference on returning PUs. Similarly, the authors
of [15] presented a dynamic spectrum access mechanism
in a network where SUs do not have perfect knowledge
of PUs’ communication behavior. The interference issue
has also been studied. However, this study only consid-
ered perfect spectrum sensing and a network with only
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one PU. In [16], the authors consider a preemptive prior-
ity approach for the channel access where SUsmust vacate
their channels whenever the corresponding PUs appear.
The work presented in [17] formulates a joint spectrum
sensing and access problem as an evolutionary game by
considering the mutual influence between spectrum sens-
ing and access. Although the interference problem has
been addressed in these works, the problem of the FAR
has not been investigated.
In [18], continuous time Markovian process (CTMP) is

used to model PU traffic in opportunistic spectrum access
(OSA) systems. However, for analyzing SU’s behavior, dis-
crete time queuing was used. In contrary to our work,
the underlying assumption made therein is that sensing
and data transmission cannot be carried out simultane-
ously and therefore the SU has to periodically suspend
its data transmission in order to perform spectrum sens-
ing. The problems with this technique are the overheads
associated with the scheduling and synchronization of the
suspension periods among SUs as well as the frequent
interruption in the SU’s data transmission. Additionally,
the SU can only detect a reappearing PU during the sus-
pension period, even if the PU reappeared before the
suspension period. This work also differs from our study
because it only supports CRNs with one channel and the
assumption that the spectrum sensing is perfect.
Simultaneous spectrum sensing and data transmission

approach have been studied in [19–22]. The issue of self-
interference due to transmitting and receiving in the same
band has been studied in [23, 24]. In spite of consider-
ing the problem of unnecessary false alarms, the authors
of [12, 25] did not investigate their effect on performance
metrics such as blocking and termination probabilities.
Furthermore, the authors of [26] analyzed different types
of unreliable sensing for both incoming and ongoing SUs
and their impact on the performance of CRNs without
addressing the FAR.
Most of the existing CTMC models [27–29] do not

cover all the aspects of the spectrum sensing and CRN
operation and some important factors were not fully
addressed. In our previous work [30], we analyzed the
performance of CRNs using a CTMC framework that sup-
ports multi-channel, spectrum handoff, full-state depen-
dent transition rates, and the ability to handle spectrum
sensing errors. In this paper, we extend the analysis in [30]
to capture the effect of the FAR and to handle the residual
self-interference within the SU transceivers.

3 Systemmodel
We consider a CRN with N number of channels in which
SUs are allowed to opportunistically utilize licensed spec-
trum bands with the constraint that the QoS of PUs
remains at an acceptable level. There are two approaches
for enabling PUs and SUs to coexist and share radio

resources in CRNs: spectrum sharing (SS) and oppor-
tunistic spectrum access (OSA) [31]. In the SS model, SUs
are allowed to transmit simultaneously with PUs on the
same band. On the other hand, the OSA approach, which
is more suitable for the model presented in this paper,
allows SUs to access the licensed channels opportunisti-
cally when PUs are not present.

3.1 Primary user model
We assume that the primary channel occupancies are time
varying alternating between idle and busy periods, and
thus SUs must perform spectrum sensing continuously
to detect the presence of returning PUs. PU connections
arrive at the network according to a Poisson process at a
rate of λ1. The PU service rate which is assumed to be
exponentially distributed is μ1. We also assume that PUs
can obtain primary channel occupancy information, for
example, by accessing a core network that makes signal-
ing or querying of the PUs’ base station [32], and thus
it is further assumed that PUs do not collide with each
other [28].
We assume that both PUs and SUs have some interfer-

ence tolerance TTOL of how many seconds of interference
they will tolerate before withdrawing from the system. If
the PU interference tolerance time TTOL is 0, no SU trans-
mission is allowed [33]. We assume equal interference
tolerance for both systems leading to both colliding users
withdrawing from the system simultaneously. A similar
assumption has been considered previously in [28].

3.2 Secondary user model
We assume that SU connections arrive at the network
according to a Poisson process with λ2. The SU ser-
vice rate is assumed to be exponentially distributed with
μ2. During the absence of PUs, SUs can opportunisti-
cally access the free channels if they are not occupied by
other SUs. We also assume that SUs are capable of broad-
casting control messages on a common control channel
(CCC) [34] to show their existence to neighboring SUs in
the proximity. Therefore, SUs do not attempt accessing
channels occupied by other SUs. Upon detection of the
presence of a returning PU, a SU leaves its current chan-
nel and starts the spectrum handover process in order to
find a new free channel. If the channel search process ends
without finding a free channel, the SU terminates its call
and leaves the network.
As illustrated in Fig. 1 and similar to the dis-

tributed (coordination function) interframe space (DIFS)
operation in IEEE 802.11, the SU has to keep sensing the
PU channel from the beginning of its transmission, since
the PU can arrive at any time instant of a slot. This pro-
cess forms a continuous sequence of sensing slots with
length equals T2. For example, if the PU appears in the
middle of a time slot, then the first slot will not get full PU
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energy, leading to a smaller detection probability than the
later full slots. Since the first T2 may be wasted, we assume
that the first partial slot sensing never leads to detection,
i.e., the detection probability is close to zero. Hence, we
should detect the PU arrival during TTOL − T2 seconds
which corresponds to ̂TTOL =

⌊
TTOL−T2

T2

⌋
slots. Although

partial slot sensing can enable the SU to perform sensing
immediately after the arrival of the PU and hence have a
prompt reaction to protect PUs, for the sake of simplify-
ing the analysis, we consider only the full slot sensing by
assuming that the detection process will begin from the
first full time slot following the SU arrival.

4 Continuous spectrum sensingmodel
One possibility for implementing continuous sensing is
to leave the upper part of the PU channel empty (i.e.,
free from SU transmissions) [35]. As shown in Fig. 1, we
split the PU channel into three subchannels: (A) SU com-
munication channel, (B) a sufficient vacant guard band
to reduce the effect of SU’s self-interference, and (C)
SU sensing channel. When the PU is active, it uses the
whole bandwidth (A+B+C) for its communication. The
secondary user uses subchannel (A) for its communica-
tion. A reappearing PU can be detected by sensing, during
ongoing SU transmission from the subchannel (C). It is
obvious that a problem here is the self-interference due
to the leakage of the SU’s transmitted signal back to its
sensing device. However, the emergence of a large vari-
ety of self-interference cancellation techniques [36–38]
in the literature enabled efficient reduction in self-
interference and therefore allowing radios to operate in
full-duplex mode. For example, the authors of [39] present
a method for canceling a passband self-interference signal
using adaptive filtering in the digital domain. Therefore,
in addition to the vacant guard band and bandpass filter-
ing, self-interference cancellation has also been assumed
to remove most of the residual self-interference. In this
model, q ∈ {1, 2} denotes an index with the interpretation
that q = 1 if the spectrum sensing is carried out by incom-
ing SUs and q = 2 if the spectrum sensing is performed
by ongoing SUs.

4.1 Energy detector-based spectrum sensing
Without loss of generality, we consider that initial and
ongoing spectrum sensing are done using an energy detec-
tor [9] with an integrate and dump operation mode as
described in [10, 11]. The analysis techniques presented
in this paper are generic and not limited to any particular
detector, provided that the used detector can be mapped
to false alarm probabilities, probability of detections, and
false alarm rates. Let yq(t) denote the SU received sig-
nal process. We express the incoming SU received signal
process in the form

y1(t) =
{
n(t)
hPUsPU(t) + n(t)

: H0
: H1,

(1)

and the ongoing SU received signal process can be formu-
lated as

y2(t) =
{
hSUsSU(t) + n(t)
hPUsPU(t) + hSUsSU(t) + n(t)

: H0
: H1,

(2)

In Eqs. (1) and (2), sPU(t) is the PU transmitted signal,
sSU(t) represents the leakage from the SU transmitted sig-
nal, n(t) is the additive white Gaussian noise (AWGN), hPU
is the PU channel gain while hSU represents the SU leakage
signal gain, and t is the time. In the above equations, H0 is
the null hypothesis meaning that PU is not present in the
sensed band, andH1 represents the alternative hypothesis
referring to the presence of the PU signal.
The received signal is filtered by a bandpass filter to

remove the out-of-band and self-interference noise. The
filtered signal is then squared by the squaring device and
applied to the integrator. The integrator output Yq (also
denotes the decision variable of the energy detector) is
sampled every Tq seconds. Then, the integrator is reset
before integrating the next sample over the next Tq sec-
onds. Finally, Yq is compared with the decision threshold
to decide about the presence of the PU. Let Wq denote
the sensed bandwidth. Let γq denote the signal to noise
ratio SNR and ηq denote the energy detection threshold.
According to [9]

Yq ∼
{

χ2
2uq

χ2
2uq (2γq),

under
under

H0
H1,

where χ2
2uq is a chi-square distribution with 2uq degrees

of freedom (i.e., the time-bandwidth product uq = WqTq)
and χ2

2uq(2γq) is a non-central chi-square distribution
with 2uq degrees of freedom and a non-centrality param-
eter (2γq). It has been shown in [40] that the probability of
detection PDq and the false alarm probability PFAq can be
given as follows:

PDq = Quq

(√
2γq,

√
ηq

)
, (3)

PFAq =
�

(
uq,

ηq
2

)
�(uq)

, (4)

where Qm(.,.) is the generalized mth Marcum Q-function
[41].
Referring to Fig. 1, where W represents the PU chan-

nel bandwidth. To obtain the received signal energy, let
PPU denote the PU transmitted signal power. Let also N0
denote the one-sided power spectrum density (PSD). Let
T1 denote the incoming SU initial sensing time. Assuming
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that the PU signal power is uniformly distributed over the
PU channel, then the incoming SU signal energy within
the initial sensed area can be obtained as

ES1 = PPUT1 (5)

and the initial sensing SNR is then obtained with

γ1 = ES1
N0

(6)

Similarly, we can obtain the signal energy within the ongo-
ing SU sensed area with a sensing time duration T2 as

ES2 = PPUT2
W2
W

(7)

Although we use guard band, bandpass filtering, and self-
interference cancellation to eliminate the effect of SU leak-
age signal, we assume that the SU self-interference has not
been fully removed. To handle the effect of any remaining
self-interference, we follow the results presented in [42] to
model the residual interference. Let assume that the SU
operate with a single-antenna full-duplex transceiver. Let
αSU denote the SU’s residual interference distortion factor.
By using Eq. (2), the effective ongoing sensing SNR can be
expressed as [42]

γ2 = ES2
N0(1 + αSU)

(8)

In continuous spectrum sensing with full-duplex com-
munication, the consideration of self-interference is par-
ticulary important since the self-interference can affect
the sensing outcome and degrade SUs performance.
Although the SU self-interference signal can have non-
zero mean, it has been been assumed in the majority of
related works to have a zeromean. For instance in [43], the
authors mentioned that in practical full-duplex systems,
the self-interference cannot be completely canceled, such
that the signals received at each node is a combination
of the signal transmitted by the other source, the residual
self-interference (RSI), and the noise. They also assume
that the RSI can be typically modeled as zero-mean addi-
tive white Gaussian noise (AWGN). The work reported
in [42] assumed that the Gaussian distortion and noise
follows central chi-square distribution in the absence of
PU signals but potentially including RSI and noncentral
chi-square distribution when PU signal is present.
Self-interference mitigation in full-duplex MIMO relays

has been investigated in [23] where the authors focused
on minimizing the residual loop interference so that it can
be regarded as additional relay input noise. They assumed
that all signal from the relay output to the relay input
(including loop interference (LI) signal) and noise vec-
tors have zero mean. Furthermore, the authors of [44–46]
assumed that the SU self-interfering signal before carrying

out self-interference suppression (SIS) to be a zero-mean
random signal with self-interference channel coefficient
equal one. In [47], the residual self-transmitted signal is
modelled with circular symmetric complex Gaussian vari-
ables. Following the common practice in existing models,
the use of the assumption that SU’s leakage signal can be
zero mean and follows central chi-square distributions is
justified and can be hold in order to take into account the
RSI signal and perform the analysis.
It should be noted that when we use a dedicated part

of the bandwidth (subchannel C) for continuous sens-
ing, the effect of the residual interference becomes much
lower than when we use the full bandwidth for simulta-
neous sensing and transmission. Each incoming SU cor-
rectly detects channel occupancy with probability PD1,
and falsely classifies a free channel as occupied with PFA1.
Similarly, each SU with ongoing calls detects the arrival
of a PU with probability PD2 and falsely classifies a free
channel as occupied with PFA2. The corresponding mis-
detection probabilities for incoming and outgoing SUs are
PM1 = 1−PD1 and PM2 = 1−PD2, respectively. The detec-
tion probability PD2 refers to the probability of detecting
incoming PU during the first ̂TTOL full slots of its arrival,
instead of the per-slot detection probability. If the per-
slot detection probability is denoted as z then PD2 = 1 −
(1−z)̂TTOL . This does not affect the FAR process since one
per-slot false alarm event is enough to initiate the spec-
trum handoff and channel searching process. Modeling of
partial slot sensing is left for future work.

4.2 Poisson process approximation
We model the occurrence of the false alarm at each sens-
ing decision with the Bernoulli process. The energy detec-
tor makes only one sensing decision in each slot which
results into a binary variable (0 or 1). Since the sensing
decisions with only white Gaussian noise present are inde-
pendent, the resulting binary output of the sensing clearly
follows the Bernoulli process (i.e., independent and iden-
tically distributed process generating 1 and 0 s), and the
Bernoulli parameter corresponds to the probability of FAR
occurrence (binary output 1) in each spectrum sensing
decision.
At each spectrum sensing decision epoch T2, a false

alarm occurs with probability PFA2 and does not occur
with probability 1 − PFA2, independently of the decision
outcome of the last sensing period. The λFAR parameter is
the product of the decision rate and the false alarm prob-
ability [10, 11, 48]. Therefore, λFAR is given by PFA2/T2.
Let us assume that the sensing interval T2 is short and
therefore we assume that the decision rate given by 1/T2
is large, and that the false alarm PFA2 is small as otherwise
there would be too many false alarms for successful SU
operation. Then, the arrival process of false alarms can be
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approximated by a Poisson process as a limit of a shrinking
Bernoulli process [13] with parameter λFAR.

5 Continuous timeMarkov chainmodel (CTMC)
We consider a two-dimensional continuous time Markov
chain (CTMC) to describe the CRN system. At any time,
the system state is determined by

(
i, j

)
where i repre-

sents the number of channels occupied by PUs and j re-
presents the number channels occupied by SUs with
restriction that 0 ≤ i ≤ N , 0 ≤ j ≤ N , 0 ≤ i + j ≤ N .
Let iμ1 and jμ2 denote the the service completion time
for PUs and SUs, respectively. The transition rate from
state

(
i, j

)
to state (h, l) is given by T (i,j)

(h,l). Note that the
parameter λFAR affects all state transitions from states
with the number of SUs j > 0. As the number of channels
increases, the number of states of the CTMC grows expo-
nentially. Since the transition rates depend on the system
states, the large number of states combined with the chan-
nel searching process under imperfect sensing conditions
would make it not trivial to compute the state transition
rates. Because it is impractical to present a state transition
diagram for a CRN with an arbitrary number of channels,
we present an illustrative example in Fig. 2 which shows
the allowable state transitions from and to state (1,1) in a
Markov chain with three channels.
As an example, consider a CRN with three channels

denoted byC1,C2, andC3. Let us assume that channelC1
is occupied by an PU, channel C2 is occupied by a SU, and
the last channel C3 is free. The Markov chain is in state
(1,1). We now explain a series of events that trigger the
system to move from state (1,1) to state (0,0). State (0,0)
indicates that all channels are free. On the occurrence of
λFAR, the SU leaves C2 and starts the channel searching
process. There are two channel selection possibilities for
the SU for continuing its data transmission. The SU can
first select C1 with probability 1/2 and then misdetect the
presence of the PU on C1 with probability PM1. The sec-
ond possibility is to select C3 with probability 1/2, then
falsely classify the free channel as occupied by the PU
with a false alarm probability PFA1, and finally misdetect
the presence of the PU on C1 with probability PM1. Both
selections lead the SU to collide with the PU, and eventu-
ally both of them leave the network. Combining all these
events, the transition rate from state (1,1) to state (0,0) can
be obtained by

λFARPM1
2

(1 + PFA1).
Another example is the transition from state (1,1) to

state (2,0). This happens with the arrival of a PU with
rate λ1 and with probability 1/2 to channel C2 which is
occupied by the SU. The SU correctly detects the pres-
ence of the PU with detection probability PD2 and vacates
the channel. After leaving the channel, the SU has two
possibilities with probability 1/2 for each. The SU first
falsely classifies the free channel C3 as being occupied by

a PU with false alarm probability PFA1 and then detects
the presence of the PU in channel C1 with probability
PD1, ending up leaving the network. The other possibil-
ity is that the SU correctly detects the existence of the
PU in channel C1 with probability PD1 and then erro-
neously classifies the free channel C3 as occupied by a PU
with false alarm probability PFA1. The resulting transition
rate is

λ1PD2PD1PFA1
2

. Proceeding in a similar manner, the
transition rates to and from the remaining states can be
obtained.

5.1 Generalization of the CTMC
The goal of this section is to extend the results presented
previously to describe a CRN with an arbitrary number of
channels N. When N is large, constructing a state transi-
tion diagram and finding a solution to the corresponding
balance equations is complicated and time consuming.
Similar to [30], we use a recursive method to calculate
the state transition rates to and from all different states
of the CTMC representing the CRN network. The state
transition rates are used to get all the possible balance
equations. Recalling that the number of PUs is denoted by
i and the number of SUs is denoted by j. Let us also assume
that the number of free channels is denoted by k which is
given by k = N − i − j.
It is important to notice that the state transition rates

presented in this paper are different from those defined
in [30] for several reasons: (1) the inclusion of the effect
of the FAR in the CTMC. (2) In our previous work [30]
we assumed that ongoing SUs perfectly detect the arrival
of PUs and that there are no false alarms during ongo-
ing data transmission. However, in this paper, we assume
that SUs with ongoing connections do not perfectly detect
the arrival of PUs and also that the false alarm probability
during ongoing calls is not negligible. With this assump-
tion, ongoing SUs detect PU arrivals with PD2 where PD2
is an arbitrary value between 0 and 1 and that the false
alarm probability during ongoing calls equal PFA2 which
is also an arbitrary value. Note that this is a more realistic
assumption for practical CRNs and represents a signifi-
cant improvement over our previous work [30] that leads
to obtaining accurate state transition rates and state prob-
abilities. (3) Because of the false alarms during ongoing
sensing, we require a new state transition that defines the
transition from state (i, j) to state (i − 1, j − 1), with i > 0
and j > 0. In addition to state transitions because of the
FAR events, we refer the reader to [30] for details concern-
ing the other different events that trigger state transitions.
All possible state transition types are described as follows:

• Transition type 1:
(
i, j

) → (
i, j + 1

)
. This transition

defines the increase in the number of SU by one and
can be obtained by
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Fig. 2 Diagram for the allowable transitions to and from state (1,1) in a three-channels CRN

f (i, k) = k
i + k

(1 − PFA1)

+ k
i + k

PFA1f (i, k − 1)

+ i
i + k

PD1f (i − 1, k)

(9)

where function f (.) is used to define the increase in
the number of SUs by 1 [30]. PD1 and PFA1 have been
defined earlier to denote the initial sensing’s
detection and false alarm probabilities. They have
been used to obtain more accurate state transition
rates and state probabilities in comparison to results
obtained in [30]. The overall state transition rate for
this case is given by λ2f (i, k)

• Transition type 2:
(
i, j

) → (
i − 1, j

)
. This transition

defines the decrease in the number of PUs by one.
We use the recursive function g(.) [30] to define this
transition

g(i, k) = i
i + k

PM1 + i
i + k

PD1g(i − 1, k)

+ k
i + k

PFA1g(i, k − 1),
(10)

where PM1, PD1, and PFA1 denote the initial sensing’s
misdetection, detection, and false alarm probabilities,
respectively. The overall state transition rate for this
case can be obtained by iμ1 + λ2g(i, k) [30].

• Transition type 3:
(
i, j

) → (
i + 1, j

)
. This transition is

given by

T (i,j)
(i+1,j) = λ1

(
N − i − j
N − i

)
+ jλ1PD2

N − i
f (i,N − i − j)

(11)

to reflect the increase in the number of PUs by one.
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• Transition type 4:
(
i, j

) → (
i, j − 1

)
. The state

transition rate for decreasing the number of SUs by
one is given by

T (i,j)
(i,j−1) = jμ2 + λ1PM2

j
N − i

+ jλFAR
(
1 − f (i,N − i − j) − g(i,N − i − j)

)
+ λ1PD2

j
N − i

g(i,N − i − j)

(12)

• Transition type 5:
(
i, j

) → (
i + 1, j − 1

)
. The state

transition rate for this case is given by

T (i,j)
(i+1,j−1) =

(
λ1PD2

j
N − i

)
× (

1 − f (i,N − i − j) − g(i,N − i − j)
)

(13)

• Transition type 6:
(
i, j

) → (
i − 1, j − 1

)
. The number

of PUs is decreased by one and the number of SUs is
decreased by one. This transition occurs if after the
occurrence FAR, the SU ends up colliding with a PU.
We get the transition rate as

T (i,j)
(i−1,j−1) = jλFAR

[
g(i,N − i − j)

]
(14)

SUFTP =

⎡⎢⎢⎢⎣
N−1∑
i=0

N−i∑
j=1

π (i,j)
(
T (i,j)

(i+1,j−1)

)
+

N−1∑
i=0

N−i∑
j=1

π (i,j)
(
T (i,j)

(i,j−1) − jμ2
)

+
N−1∑
i=1

N−i∑
j=1

π (i,j)
(
T (i,j)

(i−1,j−1)

)
⎤⎥⎥⎥⎦

λ2
(15)

PUFTP =

⎡⎢⎢⎢⎣
N∑
i=1

N−i∑
j=0

π (i,j)
(
T (i,j)

(i−1,j) − iμ1
)

+
N−1∑
i=0

N−i∑
j=1

π (i,j)
(
T (i,j)

(i,j−1) − jμ2
)

+
N−1∑
i=1

N−i∑
j=1

π (i,j)
(
T (i,j)

(i−1,j−1)

)
⎤⎥⎥⎥⎦

λ1
(
1 − π (N ,0)

)
(16)

5.2 Construction of state transition rate matrix and
computation of the steady state probability vector

Let Q denote the state transition rate matrix (also known
as infinitesimal generator) of the CTMC. Let π denote
the steady state probability vector with π(i,j) denoting the
probability that the system is in the steady state (i, j).
When the system is in the steady or equilibrium state,

the normalization condition is given by
N∑
i=0

N∑
j=0

π(i,j) = 1

[49] with the condition that 0 ≤ i ≤ N , 0 ≤ j ≤ N ,
and 0 ≤ i + j ≤ N . Let D equals the total number of

states in CTMC. We map the elements of the steady state
probability vector π(i,j) from state to index by assigning
a unique integer index to identify each state. Therefore,
the steady state probability vector can be represented as
π = (π1,π2, ...,πD) and the normalization condition is
given by

∑
d

πd = 1. The steady state probabilities of the

CTMC can be found by applying the following procedure:

• Step 1: Solve the recursive Eqs. (10–15) to obtain the
state transition rates.

• Step 2: Drive the balance equations using the rule
that incoming transition rates to each state must
equal outgoing transition rates from that state [50].

• Step 3: Use the balance equations to build the
infinitesimal generator matrixQ. All elements not on
the main diagonal ofQ represents state transition
from one state to another. The elements on the main
diagonal ofQmake the sum of the elements in the
respective row equal zero [51].

• Step 4: Apply the normalization condition
∑
d

πd = 1

• Step 5: Solve the system of linear equations πQ = 0
to obtain the CTMC’s steady state probabilities.

Each element in the steady state probability vector π rep-
resents the percentage of time that the system spends in
that state.
Since the number of states of the CTMC grows expo-

nentially with the number of the channels in the network,
it would be impossible to derive the CTMC transition
rates by hand for large number of states. In this sense,
the utilized recursive approach solves one part of this
problem. However, the number of states is still exponen-
tial, which lead to higher memory and processing time
requirements when the number of channels increases
since the full-state transition matrix is used to obtain
exact results.With very large number of channels, approx-
imation solutions with reduced number of channel states
would be beneficial. In the literature, some approxima-
tionmethods have been presented for CTMCswith a large
number of states [51, 52]. The results presented in this
paper have been obtained using the exact full CTMC.
However, when the number of channels is very large which
brings some inefficiency, we can apply approximate solu-
tions of large CTMCs to overcome this problem [51, 52].

6 Performance evaluationmeasures
In order to measure the performance of the CRN, we
define several performance evaluation measures: sec-
ondary forced termination probability (SUFTP), primary
forced termination probability (PUFTP), and secondary
self termination probability (SUSTP). Those performance
metrics are calculated by using the state transition
rates and the steady state probabilities π (i,j) and state
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transition rates derived in the previous section. The reader
is referred to [30] for more details on the definition
and derivation of other performance metrics such as
secondary successful probability (SUSP), primary block-
ing probability (PUBP), secondary blocking probability
(SUBP), as well as system resource utilization.

6.1 Secondary forced termination probability (SUFTP)
The secondary forced termination probability, denoted by
SUFTP, is the probability of terminating SU calls because
of SU’s failure to find a new free channel after moving
from its current channel. The SUFTP is calculated and
defined by Eq. (15). It reflects the ratio of terminated SUs’
call to total SU call arrivals λ2.

6.2 Primary forced termination probability (PUFTP)
The primary forced termination probability, denoted by
PUFTP and given by Eq. (16), is calculated as the ratio of
terminated PU calls because of collisions with SUs to the
total primary call arrivals λ1.

6.3 Secondary self termination probability (SUSTP)
Here, we introduce a new performance metric that mea-
sures the secondary self-termination probability. The
motivation of proposing this new metric starts with the
fact that in CRNs, the occurrence of false alarms is of criti-
cal importance since significant amount of SUs’ calls could
be terminated because of FARs. The new metric helps
in accurately determining the percentage of SUs’ connec-
tion terminated due to SUs’ own errors. By identifying this
metric, it allows for measuring the SUs’ ability of utiliz-
ing spectrum opportunities and helps in designing CRNs
by setting correct spectrum sensing parameters. The met-
ric determines the ratio of terminated SU calls because of
FAR occurrence to the total secondary call arrivals λ2. As
mentioned earlier, upon λFAR arrival, an SU has to termi-
nate its own active call if it finishes the channel searching
process without finding a new idle channel. The SUSTP
can be calculated as:

SUSTP =

N−1∑
i=0

N−i∑
j=1

π (i,j)
(
T (i,j)

(i,j−1)

)
λ2

(17)

where T (i,j)
(i,j−1) represents the portion of the transition rate

from state (i, j) to state (i, j − 1) that occur because of the
λFAR.

7 Simulation and numerical results
In this section, we report results obtained both through
theoretical analysis and simulations. We conduct simula-
tions with MATLAB using an event-based approach and
Poisson arrival processes. The parameters in simulations
and theory are chosen as follows: We set the primary

licensed bandwidth as 20 MHz, the initial sensing band-
width is 20 MHz meaning that a SU carries out spectrum
detection over the whole spectrum. However, the con-
tinuous sensing bandwidth is chosen to be 2 MHz. The
initial sensing time = 20 μs. We set the primary and sec-
ondary service rates as μ1 = μ2 = 4. PU signal power
is –91 dBm. The PU power has been set to a low level
since SUs should be able to detect even weak PUs sig-
nals. The noise level is –160 dBm/Hz. To include the effect
of the residual interference signal, we set the interference
distortion factor to 0.1. We present plots for different per-
formance metrics. It can be observed from all plots that
the analytical results are in excellent agreement with the
simulation results, which demonstrates the accuracy and
validity of the CTMC analytical model.

7.1 ROC curves
The receiver operating characteristic (ROC) for both ini-
tial and continuous spectrum sensing is shown in Fig. 3.
For continuous spectrum sensing, it can be clearly seen
that better detection performance is achieved when large
values of continuous sensing durations are used. How-
ever, for initial sensing, small initial sensing time T1 is
enough for good detection level. This improved initial
detection performance can be attributed to the fact that
incoming SUs perform spectrum sensing over the whole
PU bandwidth and hence their time bandwidth product is
improved.
The impact of the residual interference distortion fac-

tor αSU on the detection and false alarm probabilities is
demonstrated by the ROC curves shown in Fig. 3. The
SNR value for the initial sensing is 19 dB. However, the
SNR values for the continuous sensing vary depending on
the spectrum sensing time duration T2 that affects the
time bandwidth product. We assume that the PU signal
power is uniformly distributed over the PU channel. It
can be seen that the residual interference affects the ROC
curves, as the ROC performance drops significantly with
increases in αSU values. We can also see from the figure
that the curve for the initial sensing with spectrum sens-
ing time duration T1 = 10 μs is identical with the curve
for continuous sensing with spectrum sensing time dura-
tion T2 = 100 μs and αSU = 0. This is due to the fact that
their time bandwidth products are the same and equal to
200. Figure 3 also shows the effect of the residual interfer-
ence distortion factor αSU on the false alarm and detection
probabilities.

7.2 Effect of the interference tolerance ̂TTOL
We start the analysis by investigating the impact of the
PU interference tolerance on the performance of the CRN.
We tested the cases of ̂TTOL = 0, 1, 2, 3, 4, 5 slots. By
recalling the fact that PU detection starts from the first full
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̂TTOL slots, if ̂TTOL = 0, PUs tolerate only very little inter-
ference from an SU, and strict interference constraints
should be satisfied. This means that the SU should leave
the channel immediately upon the arrival of a PU. How-
ever, in practice, this is not possible since the SU user
needs some sensing time to detect the presence of the PU.
In Fig. 4, we compare the PU successful probability PUSP
for different values of TTOL and against the PU arrival rate
λ1. We can observe from the figure the improvement in
PU performance as we relax the interference constraint
by increasing ̂TTOL. We can also observe that the PUSP
drops significantly when ̂TTOL = 0. However, when ̂TTOL
is sufficiently large, PU performance starts to improve,
indicating that SUs are getting enough sensing time to
complete the process of detecting incoming PUs. This
implies that the ̂TTOL has to be chosen in a way that meets
the PUs interference constraint, and at the same time also
maximizes the CRN performance. Figure 4 also presents
the impact of the primary arrival rate λ1 on the CRN’s
performance in term of PUSP. It can be easily seen that
there are peak values in PUSP curves. As λ1 increases, the
PUSP improves. However, as λ1 become large, most of the
channels will be occupied by PUs, thus increasing the pos-
sibility of collisions with SUs who move away from their
channels because of the λFAR.
Figure 5 confirms what we asserted above regarding the

impact of ̂TTOL on the PU performance. While varying
λ1 from 1–10, the figure compares primary forced ter-
mination probability PUFTP for each TTOL value. It can

be observed that PUFTP monotonically decreases with
increasing λ1. It is also evident that the PUFTP decreases
with the increase of the ̂TTOL. The reason behind this
trend can be attributed to the fact that employing small
̂TTOL reduces the SUs capability of correctly detecting
incoming PUs. In such a case, SUs collisions with incom-
ing PUs increases forcing PUs to leave the network and
hence increasing the PUFTP.
In Fig. 6, we plot the secondary self termination prob-

ability SUSTP against λ1 for different values of ̂TTOL. The
figure shows that increasing ̂TTOL can result in a signif-
icant SU performance degradation. For example, when
̂TTOL = 0, SUs collide with incoming PUs, making life
easier for other secondary users since they could find free
channels more easily. On the one hand, when λ1 is small,
PUs will have a smaller network resource share, leaving
more opportunities for SUs. For example, SUs who leave
their channels due to λFAR could find free channel and
therefore reduce the SUSTP. On the other hand, when λ1
is large, most of the channels will be occupied by PUs,
leaving smaller network resources for SUs opportunistic
access. In this case, the effect of SUSTP is more notice-
able since with FAR occurrence (which trigger SUs to
leave their channels), SUs either correctly detect the pres-
ence of PUs or collide with them. In both causes this
leads to an increase in the SUSTP. Intuitively, PUs are
better protected by employing large ̂TTOL as it provides
SUs with enough sensing time to complete the detection
process.
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Fig. 4 Primary successful probability, λ2 = 3.5, μ1 = μ2 = 4, N = 3

7.3 Effect of the false alarm rate
Figure 7 shows the effect of λFAR on the primary forced
termination probability PUFTP for different number of
channels N. It can be seen from Fig. 7 that PUFTP
curves for different N have unique minimums at differ-
ent λFARs. The minimum points represent the optimum

sensing parameters for SUs that would strongly protect
PUs against forced connection termination. According to
Fig. 7, the PUFTP decreases with the increase in λFAR
until it reaches the minimum point after which it starts
to monotonically increase. On the one hand, too low
λFAR reduces the PU’s performance. The degradation in

Fig. 5 Primary forced termination probability, λ2 = 3.5, μ1 = μ2 = 4, N = 3
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Fig. 6 Secondary self termination probability, λ2 = 3.5, μ1 = μ2 = 4, N = 3

PUs performance is due to the fact that small values of
λFAR leads to small PD2, and therefore existing SUs fre-
quently collide with incoming PUs and thereby increase
PUFTP. On the other hand, with high values of λFAR
(and consequently high PD2), it would be easy for SUs to

detect incoming PUs and therefore they can avoid colli-
sion with them. However, too high λFAR is not good since
SUs initiate unnecessary spectrum handoffs, leading to
sharp increases in PUFTP. As shown in the figure, the
gap between PUFTP ’s curves shrinks as N increases. This
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reflects the fact that when N is sufficiently large, most of
the channels are occupied by PUs because λ1 > λ2, and
the combined effect of λFAR, PM2 and PM1 forces some
PUs to terminate their calls. With further increases in N,
the effect of λFAR on PUFTP is flat, as there would be
enough radio resources to meet SUs demands. After SUs
avoid incoming PUs and initiate a handoff and channel
switching process, SUs will most likely find new free chan-
nels and hence will not harm existing PUs as there are
more channels to accommodate them.
Figure 8 presents the effect of λFAR on the secondary

self termination probability SUSTP for different number
of channels N. It can be seen that there are peak val-
ues in the SUSTP curves. The following explanation is
related to this behavior: on the one hand, when λFAR is
relatively low, SUSTP increases with the increase in λFAR,
until it reaches the peak value and then starts to decline.
The degradation in SU performance can be explained by
the fact that as λFAR increases, a growing number of SUs
leave their current channels. If they cannot find new free
channels elsewhere they terminate their calls, and thereby
increase the SUSTP. On the other hand, when λFAR is rela-
tively large, the detection probability PD2 improves, which
enables SUs to detect incoming PUs and move away from
their channels. Hence, the proportion of SUs in the system
is reduced, leading to a decrease in the SUSTP. It came as
no surprise that increasingN greatly influences the SUSTP.
When N is small, it would not be easier for SUs who ini-
tiate spectrum handoff to find new free channels to move
to and the SUs have to leave the network. This results in a
sharp increase in SUSTP.

In Fig. 9, for several values of N, we investigate the
effect of λFAR on the primary successful probability PUSP.
The plot shows when λFAR is low; increasing λFAR slightly
increases PUSP until it reaches some (flat) peak points.
The increase is a reflection of the improved detection
PD2. As can be observed from Fig. 10, increasing λFAR
has an obvious negative impact on the secondary suc-
cessful probability SUSP. The reason for the reduction in
SUSP is that when λFAR is high, SUs increasingly initiate
unnecessary spectrum handoff processes. SUs also initi-
ate spectrum handoff processes if they detect the arrival
of returning PUs. If SUs cannot find new channels, even
though there are some free channel(s), they are forced
to terminate their own connections and hence reducing
SUSP. The results shown in Fig. 10 indicate that SU opti-
mal performance is when λFAR is close to zero. However,
in practice, this value means SUs do not perform spec-
trum sensing and therefore cannot be used since too low
λFAR leads to poor PU performance. Results shown in
Fig. 7 confirm that low λFARs are not the best for PUs
performance as they do not satisfy their QoS/interference
constraint. Note that in order to improve network perfor-
mance, there is a critical sensing tradeoff to be made. This
result is a good motivation and illustrates the significance
for optimizing detection parameters such that the effects
of the λFAR can be kept within limits that would not harm
PUs.
Figure 11 shows the influence of λFAR on the sys-

tem resource utilization for different number of channels.
When λFAR is small, SUs do not frequently initiate handoff
processes and the effect of λFAR remains flat. However, as
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λFAR increases, a growing number of SUs terminate their
calls if they cannot find other free channels. This explains
the reduction in the system resource utilization. As illus-
trated in Fig. 11, PUs’ own resource utilization is lower
than the overall system resource utilization. However, at
high λFAR, PUs’ and system resource utilization get closer.
This indicates that SUs do not complete their service

when λFAR is too high and the network resource is mainly
utilized by PUs.

7.4 Performance under perfect spectrum sensing
The effect of perfect sensing on system resource utiliza-
tion is shown in Fig. 12 where we plot a set of curves show-
ing network resource utilization versus the secondary
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arrival rate λ2 for different number of channels N. The
dash-dotted curves depict the CRN performance when
SUs operate without sensing errors. It can be observed
that, due to the absence of false alarms, network resources
are better utilized. In this case, all unoccupied PUs’ chan-
nels can be opportunistically utilized by SUs. This effect

is more noticeable when λ2 is high. On the other hand,
sensing errors can severely reduce the network resource
utilization. The impact of the resource underutilization
can be reflected in the huge gap between the resource
utilization curves. As λ2 increases, a growing number of
SUs gain network access. However, λFAR prevents them
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from using network resources because of the increasing
spectrum handoff initiation, which may lead to prema-
ture connection termination. With a small N, the system
resources will be highly utilized since PUs and SUs will
occupy most of the channels. However, when N is large,
the radio resources are not fully utilized and therefore
decreases the overall system resource utilization.

8 Conclusions
We studied the effect of the false alarm rates λFARs on
the operation of CRNs. We developed a CTMC-based
analytical model to evaluate the performance of CRNs
under realistic network operating conditions. The pro-
posed model not only includes sensing errors by incoming
SUs but also takes into account the misdetection and
false alarm probabilities by ongoing SUs. The modeling
approach described here is capable of examining other
performance evaluation parameters such as the effect of
interference tolerance ̂TTOL among PUs and SUs as well
as the effect of SU residual self-interference. We derived
formulas for different performance metrics, including
primary and secondary forced termination probabilities
as well as secondary self-termination probability. Fur-
thermore, we performed extensive simulations to vali-
date the accuracy of the analytical model. Simulation
results are in excellent agreement with the analytical
results.
Results have shown that λFAR greatly influences the per-

formance of CRNs by degrading SU performance and
reducing network resource utilization. Results have also
shown that decreasing the interference tolerance ̂TTOL has
negative effect on the performance of PUs as it reduces
primary successful probability and increases their forced
termination probability. A similar effect was also observed
with the increase in the SU residual interference distortion
factor. Large amount of residual interference deteriorates
the detection probability and leads to a reduced PU per-
formance. The incorporation of λFAR into the CTMC
model allows for obtaining exact and accurate state transi-
tion probabilities that improves calculation of the perfor-
mance evaluation measures. The results of the proposed
analytical model provide a new insight into the opera-
tion of CRNs and can be used to develop practical and
more accurate CRN performance evaluation models. In
future work, cooperative spectrum sensing can be con-
sidered for improving detection performance and/or for
mitigating the effects of fading. Further study is also
needed to investigate the case where on collisions, only
SU calls will be terminated. Additionally, adaptive sensing
parameters based on PU channel utilization can also be
studied.
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