146 research outputs found

    Reciprocity as a foundation of financial economics

    Get PDF
    This paper argues that the subsistence of the fundamental theorem of contemporary financial mathematics is the ethical concept ‘reciprocity’. The argument is based on identifying an equivalence between the contemporary, and ostensibly ‘value neutral’, Fundamental Theory of Asset Pricing with theories of mathematical probability that emerged in the seventeenth century in the context of the ethical assessment of commercial contracts in a framework of Aristotelian ethics. This observation, the main claim of the paper, is justified on the basis of results from the Ultimatum Game and is analysed within a framework of Pragmatic philosophy. The analysis leads to the explanatory hypothesis that markets are centres of communicative action with reciprocity as a rule of discourse. The purpose of the paper is to reorientate financial economics to emphasise the objectives of cooperation and social cohesion and to this end, we offer specific policy advice

    The Jacob2 Lectin of the Entamoeba histolytica Cyst Wall Binds Chitin and Is Polymorphic

    Get PDF
    For many years, we and others have used cysts of Entamoeba invadens (Ei), a reptilian parasite, to model the infectious and diagnostic cysts of the human pathogen Entamoeba histolytica (Eh). The Ei cyst wall is composed of chitin fibrils, as well as Jacob and Jessie lectins that have unique chitin-binding domains. Our recent results suggest a “wattle and daub” model of the Ei cyst wall, where the wattle or sticks (chitin fibrils bound by multivalent Jacob lectins) is constructed prior to the addition of the mortar or daub (self-aggregating Jessie3 lectins). Here we “humanize” the Ei model of the cyst wall with four findings. First, a recombinant Eh Jacob2 lectin, which has three predicted chitin-binding domains surrounding a large spacer domain, binds chitin beads. Second, polymorphisms in the spacer domain of EhJacob2 discriminate clinical isolates of Entamoeba. Third, chitinase, Jacob2 lectin, and Jessie3 lectin are present in cyst walls of clinical isolates of Entamoeba. Finally, numerous sera from patients infected with Entamoeba recognize recombinant Eh Jacob1 and Jessie3 lectins

    Targets of the Entamoeba histolytica Transcription Factor URE3-BP

    Get PDF
    The Entamoeba histolytica transcription factor Upstream Regulatory Element 3-Binding Protein (URE3-BP) is a calcium-responsive regulator of two E. histolytica virulence genes, hgl5 and fdx1. URE3-BP was previously identified by a yeast one-hybrid screen of E. histolytica proteins capable of binding to the sequence TATTCTATT (Upstream Regulatory Element 3 (URE3)) in the promoter regions of hgl5 and fdx1. In this work, precise definition of the consensus URE3 element was performed by electrophoretic mobility shift assays (EMSA) using base-substituted oligonucleotides, and the consensus motif validated using episomal reporter constructs. Transcriptome profiling of a strain induced to produce a dominant-positive URE3-BP was then used to identify additional genes regulated by URE3-BP. Fifty modulated transcripts were identified, and of these the EMSA defined motif T[atg]T[tc][cg]T[at][tgc][tg] was found in over half of the promoters (54% p<0.0001). Fifteen of the URE3-BP regulated genes were potential membrane proteins, suggesting that one function of URE3-BP is to remodel the surface of E. histolytica in response to a calcium signal. Induction of URE3-BP leads to an increase in tranwell migration, suggesting a possible role in the regulation of cellular motility

    Evidence for a “Wattle and Daub” Model of the Cyst Wall of Entamoeba

    Get PDF
    The cyst wall of Entamoeba invadens (Ei), a model for the human pathogen Entamoeba histolytica, is composed of fibrils of chitin and three chitin-binding lectins called Jacob, Jessie3, and chitinase. Here we show chitin, which was detected with wheat germ agglutinin, is made in secretory vesicles prior to its deposition on the surface of encysting Ei. Jacob lectins, which have tandemly arrayed chitin-binding domains (CBDs), and chitinase, which has an N-terminal CBD, were each made early during encystation. These results are consistent with their hypothesized roles in cross-linking chitin fibrils (Jacob lectins) and remodeling the cyst wall (chitinase). Jessie3 lectins likely form the mortar or daub of the cyst wall, because 1) Jessie lectins were made late during encystation; 2) the addition to Jessie lectins to the cyst wall correlated with a marked decrease in the permeability of cysts to nucleic acid stains (DAPI) and actin-binding heptapeptide (phalloidin); and 3) recombinant Jessie lectins, expressed as a maltose-binding proteins in the periplasm of Escherichia coli, caused transformed bacteria to agglutinate in suspension and form a hard pellet that did not dissociate after centrifugation. Jessie3 appeared as linear forms and rosettes by negative staining of secreted recombinant proteins. These findings provide evidence for a “wattle and daub” model of the Entamoeba cyst wall, where the wattle or sticks (chitin fibrils likely cross-linked by Jacob lectins) is constructed prior to the addition of the mortar or daub (Jessie3 lectins)

    Drug discovery: Insights from the invertebrate Caenorhabditis elegans

    Get PDF
    Therapeutic drug development is a long, expensive, and complex process that usually takes 12–15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.Fil: Giunti, SebastiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Andersen, Natalia Denise. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Rayes, Diego HernĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: de Rosa, Maria Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentin

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    • 

    corecore