368 research outputs found
An isolate of human immunodeficiency virus type 1 originally classified as subtype I represents a complex mosaic comprising three different group M subtypes (A, G, and I)
Full-length reference clones and sequences are currently available for eight human immunodeficiency virus type 1 (HIV-1) group M subtypes (A through H), but none have been reported for subtypes I and J, which have only been identified in a few individuals. Phylogenetic information for subtype I, in particular, is limited since only about 400 bp of env gene sequences have been determined for just two epidemiologically linked viruses infecting a couple who were heterosexual intravenous drug users from Cyprus. To characterize subtype I in greater detail, we employed long-range PCR to clone a full-length provirus (94CY032.3) from an isolate obtained from one of the individuals originally reported to be infected with this subtype. Phylogenetic analysis of C2-V3 env gene sequences confirmed that 94CY032.3 was closely related to sequences previously classified as subtype I. However, analysis of the remainder of its genome revealed various regions in which 94CY032.3 was significantly clustered with either subtype A or subtype G. Only sequences located in vpr and nef, as well as the middle portions of pol and env, formed independent lineages roughly equidistant from all other known subtypes. Since these latter regions most likely have a common origin, we classify them all as subtype I. These results thus indicate that the originally reported prototypic subtype I isolate 94CY032 represents a triple recombinant (A/G/I) with at least 11 points of recombination crossover. We also screened HIV-1 recombinants with regions of uncertain subtype assignment for the presence of subtype I sequences. This analysis revealed that two of the earliest mosaics from Africa, Z321B (A/G/?) and MAL (A/D/?), contain short segments of sequence which clustered closely with the subtype I domains of 94CY032.3. Since Z321 was isolated in 1976, subtype I as well as subtypes A and G must have existed in Central Africa prior to that date... (D'après résumé d'auteur
Mathematical modeling of the metastatic process
Mathematical modeling in cancer has been growing in popularity and impact
since its inception in 1932. The first theoretical mathematical modeling in
cancer research was focused on understanding tumor growth laws and has grown to
include the competition between healthy and normal tissue, carcinogenesis,
therapy and metastasis. It is the latter topic, metastasis, on which we will
focus this short review, specifically discussing various computational and
mathematical models of different portions of the metastatic process, including:
the emergence of the metastatic phenotype, the timing and size distribution of
metastases, the factors that influence the dormancy of micrometastases and
patterns of spread from a given primary tumor.Comment: 24 pages, 6 figures, Revie
On the spectral problem of N=4 SYM with orthogonal or symplectic gauge group
We study the spectral problem of N=4 SYM with gauge group SO(N) and Sp(N). At
the planar level, the difference to the case of gauge group SU(N) is only due
to certain states being projected out, however at the non-planar level novel
effects appear: While 1/N-corrections in the SU(N) case are always associated
with splitting and joining of spin chains, this is not so for SO(N) and Sp(N).
Here the leading 1/N-corrections, which are due to non-orientable Feynman
diagrams in the field theory, originate from a term in the dilatation operator
which acts inside a single spin chain. This makes it possible to test for
integrability of the leading 1/N-corrections by standard (Bethe ansatz) means
and we carry out various such tests. For orthogonal and symplectic gauge group
the dual string theory lives on the orientifold AdS5xRP5. We discuss various
issues related to semi-classical strings on this background.Comment: 25 pages, 3 figures. v2: Minor clarifications, section 5 expande
Stereotactic body radiotherapy for organ-confined prostate cancer
<p>Abstract</p> <p>Background</p> <p>Improved understanding of prostate cancer radiobiology combined with advances in delivery of radiation to the moving prostate offer the potential to reduce treatment-related morbidity and maintain quality of life (QOL) following prostate cancer treatment. We present preliminary results following stereotactic body radiotherapy (SBRT) treatment for organ-confined prostate cancer.</p> <p>Methods</p> <p>SBRT was performed on 304 patients with clinically localized prostate cancer: 50 received 5 fractions of 7 Gy (total dose 35 Gy) and 254 received 5 fractions of 7.25 Gy (total dose 36.25 Gy). Acute and late toxicity was assessed using the Radiation Therapy Oncology Group scale. The Expanded Prostate Cancer Index Composite questionnaire was used to assess QOL. Prostate-specific antigen response was monitored.</p> <p>Results</p> <p>At a median 30-month (26 - 37 month, range) follow-up there were no biochemical failures for the 35-Gy dose level. Acute Grade II urinary and rectal toxicities occurred in 4% of patients with no higher Grade acute toxicities. One Grade II late urinary toxicity occurred with no other Grade II or higher late toxicities. At a median 17-month (8 - 27 month, range) follow-up the 36.25 Gy dose level had 2 low- and 2 high-risk patients fail biochemically (biopsy showed 2 low- and 1 high-risk patients were disease-free in the gland). Acute Grade II urinary and rectal toxicities occurred in 4.7% (12/253) and 3.6% (9/253) of patients, respectively. For those patients with a minimum of 12 months follow-up, 5.8% (12/206) had late Grade II urinary toxicity and 2.9% (6/206) had late Grade II rectal toxicities. One late Grade III urinary toxicity occurred; no Grade IV toxicities occurred. For both dose levels at 17 months, bowel and urinary QOL returned to baseline values; sexual QOL decreased by 10%.</p> <p>Conclusions</p> <p>The low toxicity and maintained QOL are highly encouraging. Additional follow-up is needed to determine long-term biochemical control and maintenance of low toxicity and QOL.</p
Atomically-thin micas as proton conducting membranes
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable
to thermal protons. For thicker two-dimensional (2D) materials, proton
conductivity diminishes exponentially so that, for example, monolayer MoS2 that
is just three atoms thick is completely impermeable to protons. This seemed to
suggest that only one-atom-thick crystals could be used as proton conducting
membranes. Here we show that few-layer micas that are rather thick on the
atomic scale become excellent proton conductors if native cations are
ion-exchanged for protons. Their areal conductivity exceeds that of graphene
and hBN by one-two orders of magnitude. Importantly, ion-exchanged 2D micas
exhibit this high conductivity inside the infamous gap for proton-conducting
materials, which extends from 100 C to 500 C. Areal conductivity of
proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 C, well
above the current requirements for the industry roadmap. We attribute the fast
proton permeation to 5 A-wide tubular channels that perforate micas' crystal
structure which, after ion exchange, contain only hydroxyl groups inside. Our
work indicates that there could be other 2D crystals with similar nm-scale
channels, which could help close the materials gap in proton-conducting
applications
Breast MRI in nonpalpable breast lesions: a randomized trial with diagnostic and therapeutic outcome – MONET – study
<p>Abstract</p> <p>Background</p> <p>In recent years there has been an increasing interest in MRI as a non-invasive diagnostic modality for the work-up of suspicious breast lesions. The additional value of Breast MRI lies mainly in its capacity to detect multicentric and multifocal disease, to detect invasive components in ductal carcinoma in situ lesions and to depict the tumor in a 3-dimensional image. Breast MRI therefore has the potential to improve the diagnosis and provide better preoperative staging and possibly surgical care in patients with breast cancer. The aim of our study is to assess whether performing contrast enhanced Breast MRI can reduce the number of surgical procedures due to better preoperative staging and whether a subgroup of women with suspicious nonpalpable breast lesions can be identified in which the combination of mammography, ultrasound and state-of-the-art contrast-enhanced Breast MRI can provide a definite diagnosis.</p> <p>Methods/Design</p> <p>The MONET – study (<b><it>M</it></b>R mammography <b><it>O</it></b>f <b><it>N</it></b>onpalpable Br<b><it>E</it></b>ast <b><it>T</it></b>umors) is a randomized controlled trial with diagnostic and therapeutic endpoints. We aim to include 500 patients with nonpalpable suspicious breast lesions who are referred for biopsy. With this number of patients, the expected 12% reduction in surgical procedures due to more accurate preoperative staging with Breast MRI can be detected with a high power (90%). The secondary outcome is the positive and negative predictive value of contrast enhanced Breast MRI. If the predictive values are deemed sufficiently close to those for large core biopsy then the latter, invasive, procedure could possibly be avoided in some women. The rationale, study design and the baseline characteristics of the first 100 included patients are described.</p> <p>Trial registration</p> <p>Study protocol number NCT00302120</p
Reactive community-based self-administered treatment against residual malaria transmission: study protocol for a randomized controlled trial
Background: Systematic treatment of all individuals living in the same compound of a clinical malaria case may
clear asymptomatic infections and possibly reduce malaria transmission, where this is focal. High and sustained
coverage is extremely important and requires active community engagement. This study explores a communitybased
approach to treating malaria case contacts.
Methods/design: This is a cluster-randomized trial to determine whether, in low-transmission areas, treating
individuals living in the same compound of a clinical malaria case with dihydroartemisinin-piperaquine can reduce
parasite carriage and thus residual malaria transmission. Treatment will be administered through the local health
system with the approach of encouraging community participation designed and monitored through formative
research. The trial goal is to show that this approach can reduce in intervention villages the prevalence of
Plasmodium falciparum infection toward the end of the malaria transmission season.
Discussion: Adherence and cooperation of the local communities are critical for the success of mass treatment
campaigns aimed at reducing malaria transmission. By exploring community perceptions of the changing trends in
malaria burden, existing health systems, and reaction to self-administered treatment, this study will develop and
adapt a model for community engagement toward malaria elimination that is cost-effective and fits within the
existing health system.
Trial registration: Clinical trials.gov, NCT02878200. Registered on 25 August 2016
- …