21 research outputs found

    Cell immobilized fog-trap system for fat, oil, and grease removal from restaurant wastewater

    Full text link
    Cell immobilized lipase-producing bacteria on three different matrices were incorporated in a fat-, oil-, and grease (FOG) trap system for restaurant wastewater treatment. During a 16-day laboratory-scale experiment for the treatment of synthetic FOG wastewater containing soybean oil, no significant difference (two-tailed t test at 95% confidence interval) in the FOG removal between two systems was observed at FOG influent≤1,000 mg/L. However, the typical trap showed lower FOG removal efficiency than the matrix-based system when the influent FOG concentration was increased to ≥5,000 mg/L. In addition, the matrix-based trap system was able to sustain a stable high FOG removal, with <100 mg/L effluent, even at 10,000 mg/L influent FOG. Based on FOG heights measured and mass balance calculations, 97.4 and 99.5% of the total FOG load for 16 days were removed in a typical trap and matrix-based system, respectively. About 93.6% of the removal in the matrix-based was accounted to biodegradation. The 30-day full-scale operations demonstrated a distinguishably better performance in the matrix-based system (92.7±9.06% of 1,044.8±537.27 mg FOG/L) than in the typical trap system (74.6±27.13% of 463.4±296.87 mg FOG/L) for the treatment of barbeque restaurant wastewater. Similarly, matrix-based system revealed higher chemical oxygen demand removal (85.9±11.99%) than the typical trap system (60.4±31.26%). Characterizations of the influent, emulsified, adsorbed and effluent FOG indicated that straight saturated fatty acids constituted the cause of clogging problems in the FOG-trap and piping system. © 2009 ASCE

    Chemically Cross-Linked Graphene Oxide as a Selective Layer on Electrospun Polyvinyl Alcohol Nanofiber Membrane for Nanofiltration Application.

    Full text link
    Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration

    Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes

    Full text link
    © 2015 Elsevier B.V. The preparation and performances of the newly synthesized thin film composite (TFC) forward osmosis (FO) membranes with graphene oxide (GO)-modified support layer are presented in this study. GO nanosheets were incorporated in the polysulfone (PSf) to obtain PSf/GO composite membrane support layer. Polyamide (PA) active layer was subsequently formed on the PSf/GO by interfacial polymerization to obtain the TFC-FO membranes. Results reveal that at an optimal amount of GO addition (0.25wt%), a PSf/GO composite support layer with favorable structural property measured in terms of thickness, porosity and pore size can be achieved. The optimum incorporation of GO in the PSF support layer not only significantly improved water permeability but also allowed effective PA layer formation, in comparison to that of pure PSf support layer which had much lower water permeability. Thus, a TFC-FO membrane with high water flux (19.77Lm-2h-1 against 6.08Lm-2h-1 for pure PSf) and reverse flux selectivity (5.75Lg-1 against 3.36Lg-1 for pure PSf) was obtained under the active layer facing the feed solution or AL-FS membrane orientation. Besides the improved structural properties (reduced structural parameter, S) of the support layer, enhanced support hydrophilicity also contributed to the improved water permeability of the membrane. Beyond a certain point of GO addition (≥0.5wt%), the poor dispersion of GO in dope solution and significant structure change resulted in lower water permeation and weaker mechanical properties in support as well as FO flux/selectivity of consequent TFC membrane. Overall, this study suggests that GO modification of membrane supports could be a promising technique to improve the performances of TFC-FO membranes

    Silicene nanosheets as support fillers for thin film composite forward osmosis membranes

    Full text link
    Development of membranes with enhanced separation and transport properties remains crucial for the advancement of forward osmosis (FO). Herein, a novel thin film composite (TFC) FO membrane with silicene-loaded polysulfone support (SN) is reported. Silicene loading was varied to obtain different SNs grown with polyamide (PA) layers to afford TFC-SN FO membranes. Characterization results reveal that optimal silicene loading (0.25 wt%) produced the most porous and most hydrophilic SN0.25 with finger-like pore structures. Low silicene loading showed minimal impact, whereas, excessive addition resulted in aggregation which diminished its effect in SN. Meanwhile, silicene had no influence on PA layer formation as all TFC-SNs registered similar solute permeability coefficient B = 0.14–0.16 LMH. On the other hand, TFC-SN0.25 achieved the highest water permeability coefficient A = 1.56 LMH bar−1 attributable to the favorable properties of SN0.25. TFC-SN0.25 also exhibited the lowest structural parameter S = 334 μm, which explains its superior FO performance relative to other TFC-SNs. Results from FO runs indicate that internal concentration polarization was reduced by 27.5–33% in TFC-SN0.25 compared with the control (TFC-SN0). FO runs in simulated low salinity water and seawater feed highlight the potential of TFC-SN0.25 for desalination. The developed TFC-SN0.25 can be repeatedly used and deliver consistent Jv values. Overall findings demonstrate the benefits of silicene for improved performance of TFC FO membranes

    Dual-layered nanocomposite substrate membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis

    Full text link
    © 2016 Elsevier Ltd A novel thin-film composite (TFC) forward osmosis (FO) membrane with dual-layered substrate membrane was fabricated by a double-blade casting technique using different polysulfone (PSf) concentrations for top (15 wt%) and bottom (7 wt%) substrate layers. Graphene oxide (GO) was incorporated in the substrate layer, and the dual casting approach resulted in a membrane support with a highly porous bottom structure and a dense top skin layer on which the polyamide active layer was effectively formed. The dual-layered TFC PSf/GO membrane (TFC-PSfdGO) exhibited high water permeability, and ion selectivity was enhanced by the presence of well dispersed hydrophilic GO in the PSf substrate. The TFC-PSfdGO also exhibited the lowest specific reverse salt flux (Js/Jv = 0.19 g L-1) and a more favorable structural parameter (S = 130 μm) compared to GO-free membranes. Using deionized water as feed solution and 1 M NaCl as draw solution (DS), TFC-PSfdGO had Jv = 33.8 L m−2 h−1 and Js = 6.9 g−2 h−1 under AL-FS mode, and Jv = 61.5 L m−2h−1 and Js = 14.0 g−2 h−1 under AL-DS mode. The potential of TFC-PSfdGO for commercial application was further evaluated by fabricating it with a fabric backing support (denoted as TFC-PSfdGOf). Compared to TFC-PSfdGO, TFC-PSfdGOf exhibited only 14% decline in its water flux. The overall results reveal that, fabrication of TFC substrate membrane via dual-blade casting approach along with GO incorporation produced high-performance TFC FO membranes which likely reduced the internal concentration polarization effects

    Supramolecular host-guest complex of methylated β-cyclodextrin with polymerized ionic liquid ([vbim]TFSI)<inf>n</inf> as highly effective and energy-efficient thermo-regenerable draw solutes in forward osmosis

    Full text link
    © 2021 Elsevier B.V. Supramolecular inclusion complexes with lower critical solution temperature (LCST) properties were investigated for the first time as forward osmosis (FO) draw solutes. Randomly methylated-β-cyclodextrin (Rm-β-CD) host molecules accommodate polymerized ionic liquids (([vbim]TFSI)n PILs) through their hydrophobic TFSI− anions as guests. LCST properties were tuned by varying the chain lengths of ([vbim]TFSI)n, from which, short-chain oligo([vbim]TFSI) was found most suitable. Draw solutions (DS) of Rm-β-CD/oligo([vbim]TFSI) complex have highly tunable cloud-point temperatures (Tc), fast LCST kinetics and sufficient osmotic properties for an efficient FO. Under PRO mode, 0.5 M Rm-β-CD/0.078 M oligo([vbim]TFSI) induced competitive FO water flux (Jv ~13.73 L m−2h−1) and negligible reverse solute flux (Js ~4.41 × 10−3 mol m−2h−1) against DI water feed. It successfully processed different saline feeds (0.034 M and 0.6 M NaCl) with reasonable FO performance and superior Js/JV ~0.001 mol m−2h−1, demonstrating its competence for FO desalination. When heated slightly above its Tc = 29 °C (TTP = 30 °C), thermal precipitation (TP) is ensued with the release of TFSI− anions in oligo([vbim]TFSI) from Rm-β-CD. Due to its hydrophobicity, oligo([vbim]TFSI) precipitates while entrapping the suspended Rm-β-CDs between its chains causing flocculation and sedimentation. Thus, with only +5 °C heating above FO temperature (25 °C), 95% of draw solutes are effectively recovered from the spent DS after settling. Residual (~5%) Rm-β-CD in the DS supernatant is subsequently removed via nanofiltration at 99.33% rejection, producing non-toxic water effluent based on in vitro cytotoxicity results. Energy consumption estimates reveal the feasibility of Rm-β-CD/oligo([vbim]TFSI) as it requires minimal heat energy for recovery. This study offers new insights on the potential of host-guest complexes as a new class of energy-efficient draw solutes for FO desalination technology

    Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li<sup>+</sup> recovery from seawater

    Full text link
    © 2016 Elsevier B.V. A polysulfone (PSf)-based mixed matrix nanofiber (MMN) dispersed with particulate lithium ion sieves (LIS) was developed as a flow-through membrane Li+ adsorber. The MMN was prepared via electrospinning, thermal annealing, and acid pickling (i.e. activated LIS: Li0.67H0.96Mn1.58O4 or MO). The unique dimensional property of the macroporous MMN promoted high MO exposure and distribution on the nanofiber surface. Minimal losses in Li+ adsorption capacity and kinetics, elicited by the PSf matrix, were observed. Moreover, the PSf matrix effectively improved the Li+ selectivity of MO as it alleviated the sorption of interfering cations. As membranes, the MMNs were highly permeable to water under minimal trans-membrane pressure. The convective flow of seawater through the highly accessible MMN facilitated the fast Li+ transport to the MO surface. Breakthrough studies revealed that a balance between kinetics and dynamic Li+ adsorption capacity could be obtained at optimal seawater/MMN contact time, which was easily achieved by adjusting the feed flow-rate or MMN thickness. Continuous flow-through operations were successfully controlled at a very short adsorption-desorption cycle time (one day) while maintaining the dynamic Li+ adsorption capacity of the MMN. Cycled operations confirmed the regenerability of the MMN and its adsorption performance consistency. Enrichment of Li+ was successfully done by repeated Li+ desorption in a small volume of acid solution. Overall results demonstrated the strong potential of the flow-through MMN membrane adsorber for continuous Li+ recovery from alternative resources like seawater

    Tetrabutylammonium 2,4,6-trimethylbenzenesulfonate as an effective and regenerable thermo-responsive ionic liquid drawing agent in forward osmosis for seawater desalination

    Full text link
    © 2020 Elsevier B.V. Efficient drawing agents are essential in forward osmosis (FO) for clean water production. Monomeric thermo-responsive ionic liquid (IL) [N4444]2,4,6-MeBnSO3 was thoroughly investigated as a drawing agent in FO. The IL can be safely employed due to its thermal stability and low cytotoxicity. It has a van't Hoff factor i = 1.21, with sufficient ionic strength to generate osmotic pressure ~ 58.92 bars (2 M). FO operations especially under PRO mode demonstrate that 2 M [N4444]2,4,6-MeBnSO3 can induce competitive water flux Jv ~ 12.3 L m−2 h−1 with remarkably low reverse solute flux Js 99% of the remaining 2% can be recovered through reverse osmosis or membrane distillation to produce water effluents with non-toxic IL concentrations (≪100 mg L−1). Results indicate that thermo-responsive [N4444]2,4,6-MeBnSO3 is a promising alternative reusable drawing agent in FO process

    Development in-house: a trap method for pretreatment of fat, oil, and grease in kitchen wastewater

    No full text
    Most of the commercial restaurant and domestic house kitchen does not equip with the proper kitchen wastewater treatment. These wastes contain high concentrations of fat, oil, and grease (FOG) which are disposed into the sewerage network and increase the sanitary sewer overflow (SSO). The present chapter discusses the individual treatment systems which are used for the removal of FOG from the kitchen wastewater. The most common and cheapest FOG treatment system is by using the gravity separation. However, in order to increase the efficiency of these systems, some of the researchers have been using natural materials to enhance the adsorption process of FOG. The establishment of a reliable FOG treatment system for each house based on the separation system might contribute effectively in the FOG removal concentration in the kitchen wastewater
    corecore