11 research outputs found
Porometry, porosimetry, image analysis and void network modelling in the study of the pore-level properties of filters
We present fundamental and quantitative comparisons between the techniques of porometry (or flow permporometry), porosimetry, image analysis and void network modelling for seven types of filter, chosen to encompass the range of simple to complex void structure. They were metal, cellulose and glass fibre macro- and meso-porous filters of various types. The comparisons allow a general re-appraisal of the limitations of each technique for measuring void structures. Porometry is shown to give unrealistically narrow void size distributions, but the correct filtration characteristic when calibrated. Shielded mercury porosimetry can give the quaternary (sample-level anisotropic) characteristics of the void structure. The first derivative of a mercury porosimetry intrusion curve is shown to underestimate the large number of voids, but this error can be largely corrected by the use of a void network model. The model was also used to simulate the full filtration characteristic of each sample, which agreed with the manufacturer's filtration ratings. The model was validated through its correct a priori simulation of absolute gas permeabilities for track etch, cellulose nitrate and sintered powder filters. © 2011 Elsevier Ltd
Design of Porous Carbons for Supercapacitor Applications for Different Organic Solvent-Electrolytes
The challenge of optimizing the pore size distribution of porous electrodes for different electrolytes is encountered in supercapacitors, lithium-ion capacitors and hybridized battery-supercapacitor devices. A volume-averaged continuum model of ion transport, taking into account the pore size distribution, is employed for the design of porous electrodes for electrochemical double-layer capacitors (EDLCs) in this study. After validation against experimental data, computer simulations investigate two types of porous electrodes, an activated carbon coating and an activated carbon fabric, and three electrolytes: 1.5 M TEABF4 in acetonitrile (AN), 1.5 M TEABF4 in propylene carbonate (PC), and 1 M LiPF6 in ethylene carbonate:ethyl methyl carbonate (EC:EMC) 1:1 v/v. The design exercise concluded that it is important that the porous electrode has a large specific area in terms of micropores larger than the largest desolvated ion, to achieve high specific capacity, and a good proportion of mesopores larger than the largest solvated ion to ensure fast ion transport and accessibility of the micropores.</jats:p
Designing a Graphene Coating-Based Supercapacitor with Lithium Ion Electrolyte: An Experimental and Computational Study via Multiscale Modeling
Graphene electrodes are investigated for electrochemical double layer capacitors (EDLCs) with lithium ion electrolyte, the focus being the effect of the pore size distribution (PSD) of electrode with respect to the solvated and desolvated electrolyte ions. Two graphene electrode coatings are examined: a low specific surface area (SSA) xGNP-750 coating and a high SSA coating based on a-MWGO (activated microwave expanded graphene oxide). The study comprises an experimental and a computer modeling part. The experimental part includes fabrication, material characterization and electrochemical testing of an EDLC with xGNP-750 coating electrodes and electrolyte 1M LiPF6 in EC:DMC. The computational part includes simulations of the galvanostatic charge-discharge of each EDLC type, based on a continuum ion transport model taking into account the PSD of electrodes, as well as molecular modeling to determine the parameters of the solvated and desolvated electrolyte ions and their adsorption energies with each type of electrode pore surface material. Predictions, in agreement with the experimental data, yield a specific electrode capacitance of 110 F g−1 for xGNP-750 coating electrodes in electrolyte 1M LiPF6 in EC:DMC, which is three times higher than that of the high SSA a-MWGO coating electrodes in the same lithium ion electrolyte.</jats:p
Supercapacitors with lithium-ion electrolyte: An experimental study and design of the activated carbon electrodes via modelling and simulations
12 months embargo applie
Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel
alkali-washed nanofibrillated cellulose (NFC) samples, obtained from hardwood kraft pulp, with different amounts of retained xylan were prepared to study the influence of xylan on the water-retention properties of NFC suspensions. In this study, NFC was produced using an oxoammonium-catalyzed oxidation reaction that converts the cellulosic substrate to a more highly oxidized material via the action of the nitroxide radical species 2,2,6,6-tetramethylpiperidine-1-oxyl. Reduction of the xylan content in NFC was achieved by cold alkali extraction of kraft pulp. The pulps were then oxidized to a set charge under constant chemical conditions, and the reaction time was determined. The xylan content of the feed pulp was found to have a large negative influence on the oxidation rate of the pulp, as the oxidation time shortened when xylan was removed, from 220 min (for 25.2 % xylan content) to 28 min (for 7.3 % xylan content). Following fibrillation by homogenization, the swelling of the NFC was determined by a two-point solute exclusion method. The distribution of hemicellulose over the fibril surface was observed by atomic force microscopy. Xylan was found to be distributed unevenly over the surface, and its presence increased the water immobilized within flocs of NFC, i.e., so-called network swelling. The swelling of the NFC had a large impact on its rheology and dewatering. Comparison of the morphological and swelling properties of the suspensions with their rheological and dynamic dewatering behavior showed that reducing the xylan content in NFC results in a weaker gel structure of the nanocellulose suspension. The results indicate that most of the water is held by the swollen structure by means of xylan particles trapped within the hemicellulose layer covering the fibril surface. Samples with high xylan content had high shear modulus and viscosity and were difficult to dewater.</p