61 research outputs found

    DR6 as a Diagnostic and Predictive Biomarker in Adult Sarcoma

    Get PDF
    The Death Receptor 6 (DR6) protein is elevated in the serum of ovarian cancer patients. We tested DR6 serum protein levels as a diagnostic/predictive biomarker in several epithelial tumors and sarcomas.DR6 gene expression profiles were screened in publically available arrays of solid tumors. A quantitative immunofluorescent western blot analysis was developed to test the serum of healthy controls and patients with sarcoma, uterine carcinosarcoma, bladder, liver, and pancreatic carcinomas. Change in DR6 serum levels was used to assay the ability of DR6 to predict the response to therapy of sarcoma patients.DR6 mRNA is highly expressed in all tumor types assayed. Western blot analysis of serum DR6 protein demonstrated high reproducibility (r = 0.97). Compared to healthy donor controls, DR6 serum levels were not elevated in patients with uterine carcinosarcoma, bladder, liver, or pancreatic cancers. Serum DR6 protein levels from adult sarcoma patients were significantly elevated (p<0.001). This was most evident for patients with synovial sarcoma. Change in serum DR6 levels during therapy correlated with clinical benefit from therapy (sensitivity 75%, and positive predictive value 87%).DR6 may be a clinically useful diagnostic and predictive serum biomarker for some adult sarcoma subtypes.Diagnosis of sarcoma can be difficult and can lead to improper management of these cancers. DR6 serum protein may be a tool to aid in the diagnosis of some sarcomatous tumors to improve treatment planning. For patients with advanced disease, rising DR6 levels predict non-response to therapy and may expedite therapeutic decision making and reduce reliance on radiologic imaging

    New technologies for examining neuronal ensembles in drug addiction and fear

    Get PDF
    Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear

    Combined analysis of cell growth and apoptosis-regulating proteins in HPVs associated anogenital tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of human papillomavirus (HPV) associated with Bowenoid papulosis and condyloma acuminatum of anogenital tumors are still unknown. Here we evaluated molecules that are relevant to cellular proliferation and regulation of apoptosis in HPV associated anogenital tumors.</p> <p>Methods</p> <p>We investigated the levels of telomerase activity, and inhibitor of apoptosis proteins (IAPs) family (c-IAP1, c-IAP2, XIAP) and c-Myc mRNA expression levels in 20 specimens of Bowenoid papulosis and 36 specimens of condyloma acuminatum in anogenital areas. Overall, phosphorylated (p-) AKT, p-ribosomal protein S6 (S6) and p-4E-binding protein 1 (4EBP1) expression levels were examined by immunohistochemistry in anogenital tumors both with and without positive telomerase activity.</p> <p>Results</p> <p>Positive telomerase activity was detected in 41.7% of Bowenoid papulosis and 27.3% of condyloma acuminatum compared to normal skin (<it>p </it>< 0.001). In contrast, the expression levels of Bowenoid papulosis indicated that c-IAP1, c-IAP2 and XIAP mRNA were significantly upregulated compared to those in both condyloma acuminatum samples (<it>p </it>< 0.001, <it>p </it>< 0.001, <it>p </it>= 0.022, respectively) and normal skin (<it>p </it>< 0.001, <it>p </it>= 0.002, <it>p </it>= 0.034, respectively). Overall, 30% of Bowenoid papulosis with high risk HPV strongly promoted IAPs family and c-Myc but condyloma acuminatum did not significantly activate those genes. Immunohistochemically, p-Akt and p-S6 expressions were associated with positive telomerase activity but not with p-4EBP1 expression.</p> <p>Conclusion</p> <p>Combined analysis of the IAPs family, c-Myc mRNA expression, telomerase activity levels and p-Akt/p-S6 expressions may provide clinically relevant molecular markers in HPV associated anogenital tumors.</p

    Reverse-Phase Phosphoproteome Analysis of Signaling Pathways Induced by Rift Valley Fever Virus in Human Small Airway Epithelial Cells

    Get PDF
    Rift valley fever virus (RVFV) infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK) and downstream transcriptional factors [STAT1 (Y701), ATF2 (T69/71), MSK1 (S360) and CREB (S133)]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46) correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473), along with phosphorylation of FOX 01/03 (T24/31) which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication

    Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues

    Get PDF
    Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress – rather than promote – relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is partially driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms

    Expression of inhibitor of apoptosis protein Livin in renal cell carcinoma and non-tumorous adult kidney

    Get PDF
    The antiapoptotic Livin/ML-IAP gene has recently gained much attention as a potential new target for cancer therapy. Reports indicating that livin is expressed almost exclusively in tumours, but not in the corresponding normal tissue, suggested that the targeted inhibition of livin may present a novel tumour-specific therapeutic strategy. Here, we compared the expression of livin in renal cell carcinoma and in non-tumorous adult kidney tissue by quantitative real-time reverse transcription-PCR, immunoblotting, and immunohistochemistry. We found that livin expression was significantly increased in tumours (P=0.0077), but was also clearly detectable in non-tumorous adult kidney. Transcripts encoding Livin isoforms α and β were found in both renal cell carcinoma and normal tissue, without obvious qualitative differences. Livin protein in renal cell carcinoma samples exhibited cytoplasmic and/or nuclear staining. In non-tumorous kidney tissue, Livin protein expression was only detectable in specific cell types and restricted to the cytoplasm. Thus, whereas the relative overexpression of livin in renal cell carcinoma indicates that it may still represent a therapeutic target to increase the apoptotic sensitivity of kidney cancer cells, this strategy is likely to be not tumour-specific

    cIAP1/2 Are Direct E3 Ligases Conjugating Diverse Types of Ubiquitin Chains to Receptor Interacting Proteins Kinases 1 to 4 (RIP1–4)

    Get PDF
    The RIP kinases have emerged as essential mediators of cellular stress that integrate both extracellular stimuli emanating from various cell-surface receptors and signals coming from intracellular pattern recognition receptors. The molecular mechanisms regulating the ability of the RIP proteins to transduce the stress signals remain poorly understood, but seem to rely only partially on their kinase activities. Recent studies on RIP1 and RIP2 have highlighted the importance of ubiquitination as a key process regulating their capacity to activate downstream signaling pathways. In this study, we found that XIAP, cIAP1 and cIAP2 not only directly bind to RIP1 and RIP2 but also to RIP3 and RIP4. We show that cIAP1 and cIAP2 are direct E3 ubiquitin ligases for all four RIP proteins and that cIAP1 is capable of conjugating the RIPs with diverse types of ubiquitin chains, including linear chains. Consistently, we show that repressing cIAP1/2 levels affects the activation of NF-κB that is dependent on RIP1, -2, -3 and -4. Finally, we identified Lys51 and Lys145 of RIP4 as two critical residues for cIAP1-mediated ubiquitination and NF-κB activation

    Btf and TRAP150 have distinct roles in regulating subcellular mRNA distribution

    No full text

    Live CLEM Imaging to Analyze Nuclear Structures at High Resolution

    No full text
    corecore