10 research outputs found

    Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens

    No full text
    Entomopathogens are important natural enemies of many insect and mite species and as such have been recognised as providing an important ecosystem service. Indeed, fungal entomopathogens have been widely investigated as biological control agents of pest insects in attempts to improve the sustainability of crop protection. However, even though our understanding of the ecology of fungal entomopathogens has vastly increased since the early 1800s, we still require in-depth ecological research that can expand our scientific horizons in a manner that facilitates widespread adoption of these organisms as efficient biological control agents. Fungal entomopathogens have evolved some intricate interactions with arthropods, plants and other microorganisms. The full importance and complexity of these relationships is only just becoming apparent. It is important to shift our thinking from conventional biological control, to an understanding of an as yet unknown “deep space”. The use of molecular techniques and phylogenetic analyses have helped us move in this direction, and have provided important insights on fungal relationships. Nevertheless, new techniques such as the PhyloChip and pyrosequencing might help us see beyond the familiar fields, into areas that could help us forge a new understanding of the ecology of fungal entomopathogens

    Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore

    Get PDF
    The diamondback moth, Plutella xylostella is a cosmopolitan pest that has evolved resistance to all classes of insecticide, and costs the world economy an estimated US $4-5 billion annually. We analyse patterns of variation among 532 P. xylostella genomes, representing a worldwide sample of 114 populations. We find evidence that suggests South America is the geographical area of origin of this species, challenging earlier hypotheses of an Old-World origin. Our analysis indicates that Plutella xylostella has experienced three major expansions across the world, mainly facilitated by European colonization and global trade. We identify genomic signatures of selection in genes related to metabolic and signaling pathways that could be evidence of environmental adaptation. This evolutionary history of P. xylostella provides insights into transoceanic movements that have enabled it to become a worldwide pest

    The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products

    No full text
    corecore