282 research outputs found

    Composite system in deformed space with minimal length

    Full text link
    For composite systems made of NN different particles living in a space characterized by the same deformed Heisenberg algebra, but with different deformation parameters, we define the total momentum and the center-of-mass position to first order in the deformation parameters. Such operators satisfy the deformed algebra with new effective deformation parameters. As a consequence, a two-particle system can be reduced to a one-particle problem for the internal motion. As an example, the correction to the hydrogen atom nnS energy levels is re-evaluated. Comparison with high-precision experimental data leads to an upper bound of the minimal length for the electron equal to 3.3×10−18m3.3\times 10^{-18} {\rm m}. The effective Hamiltonian describing the center-of-mass motion of a macroscopic body in an external potential is also found. For such a motion, the effective deformation parameter is substantially reduced due to a factor 1/N21/N^2. This explains the strangely small result previously obtained for the minimal length from a comparison with the observed precession of the perihelion of Mercury. From our study, an upper bound of the minimal length for quarks equal to 2.4×10−17m2.4\times 10^{-17}{\rm m} is deduced, which appears close to that obtained for electrons.Comment: 22 pages, no figure; small additions in Secs. I, III and V

    Doubly Special Relativity and de Sitter space

    Full text link
    In this paper we recall the construction of Doubly Special Relativity (DSR) as a theory with energy-momentum space being the four dimensional de Sitter space. Then the bases of the DSR theory can be understood as different coordinate systems on this space. We investigate the emerging geometrical picture of Doubly Special Relativity by presenting the basis independent features of DSR that include the non-commutative structure of space-time and the phase space algebra. Next we investigate the relation between our geometric formulation and the one based on quantum κ\kappa-deformations of the Poincar\'e algebra. Finally we re-derive the five-dimensional differential calculus using the geometric method, and use it to write down the deformed Klein-Gordon equation and to analyze its plane wave solutions.Comment: 26 pages, one formula (67) corrected; some remarks adde

    The Free Particle in Deformed Special Relativity

    Full text link
    The phase space of a classical particle in DSR contains de Sitter space as the space of momenta. We start from the standard relativistic particle in five dimensions with an extra constraint and reduce it to four dimensional DSR by imposing appropriate gauge fixing. We analyze some physical properties of the resulting theories like the equations of motion, the form of Lorentz transformations and the issue of velocity. We also address the problem of the origin and interpretation of different bases in DSR.Comment: 15 page

    The principle of relative locality

    Full text link
    We propose a deepening of the relativity principle according to which the invariant arena for non-quantum physics is a phase space rather than spacetime. Descriptions of particles propagating and interacting in spacetimes are constructed by observers, but different observers, separated from each other by translations, construct different spacetime projections from the invariant phase space. Nonetheless, all observers agree that interactions are local in the spacetime coordinates constructed by observers local to them. This framework, in which absolute locality is replaced by relative locality, results from deforming momentum space, just as the passage from absolute to relative simultaneity results from deforming the linear addition of velocities. Different aspects of momentum space geometry, such as its curvature, torsion and non-metricity, are reflected in different kinds of deformations of the energy-momentum conservation laws. These are in principle all measurable by appropriate experiments. We also discuss a natural set of physical hypotheses which singles out the cases of momentum space with a metric compatible connection and constant curvature.Comment: 12 pages, 3 figures; in version 2 one reference added and some minor modifications in sects. II and III mad

    Kinematics of a relativistic particle with de Sitter momentum space

    Full text link
    We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulas for the action of the deformed Poincare' group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.Comment: RevTeX, 12 pages, no figure

    Non-Linear Relativity in Position Space

    Full text link
    We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.Comment: 7 pages, revised versio

    Horizon Problem Remediation via Deformed Phase Space

    Full text link
    We investigate the effects of a special kind of dynamical deformation between the momenta of the scalar field of the Brans-Dicke theory and the scale factor of the FRW metric. This special choice of deformation includes linearly a deformation parameter. We trace the deformation footprints in the cosmological equations of motion when the BD coupling parameter goes to infinity. One class of the solutions gives a constant scale factor in the late time that confirms the previous result obtained via another approach in the literature. This effect can be interpreted as a quantum gravity footprint in the coarse grained explanation. The another class of the solutions removes the big bang singularity, and the accelerating expansion region has an infinite temporal range which overcomes the horizon problem. After this epoch, there is a graceful exiting by which the universe enters in the radiation dominated era.Comment: 13 pages, 2 figures, to appear in GER

    Lorentz-covariant deformed algebra with minimal length

    Get PDF
    The DD-dimensional two-parameter deformed algebra with minimal length introduced by Kempf is generalized to a Lorentz-covariant algebra describing a (D+1D+1)-dimensional quantized space-time. For D=3, it includes Snyder algebra as a special case. The deformed Poincar\'e transformations leaving the algebra invariant are identified. Uncertainty relations are studied. In the case of D=1 and one nonvanishing parameter, the bound-state energy spectrum and wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200

    The role of e-participation and open data in evidence-based policy decision making in local government

    Get PDF
    The relationships between policies, their values and outcomes are often difficult for citizens and policy makers to assess due to the complex nature of the policy lifecycle. With the opening of data by public administrations there is now a greater opportunity for transparency, accountability and evidence-based decision making in the policy making process. In representative democracies, citizens rely on their elected representatives and local administrations to take policy decisions that address societal challenges and add value to their local communities. Citizens now have the opportunity to assess the impact and values of the policies introduced by their elected representatives and hold them accountable by utilising historical open data that is publicly available. Using a qualitative case study in a UK Local Government Authority, this paper examines how e-participation platforms and the use of open data can facilitate more factual, evidence based and transparent policy decision making and evaluation. From a theoretical stance, this paper contributes to the policy lifecycle and e-participation literature. The paper also offers valuable insights to public administrations on how open data can be utilised for evidence-based policy decision making and evaluationThis work evolved in the context of the project Policy Compass (http://policycompass.eu/), a project co-funded by the EC within FP7, Grant agreement no: 612133

    Scalar field propagation in the phi^4 kappa-Minkowski model

    Full text link
    In this article we use the noncommutative (NC) kappa-Minkowski phi^4 model based on the kappa-deformed star product, ({*}_h). The action is modified by expanding up to linear order in the kappa-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the kappa-Minkowski is specifically kappa-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the kappa-deformed Minkowski spacetime, resulting in a kappa-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the kappa-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planckian energies we obtain the direction dependent kappa-modified dispersion relations. Thus our kappa-effective model for the massive scalar field shows a birefringence effect.Comment: 23 pages, 2 figures; To be published in JHEP. Minor typos corrected. Shorter version of the paper arXiv:1107.236
    • …
    corecore