21 research outputs found
Effects of pulsed electric fields on DNA of human lymphocytes
The effects of pulsed electric fields of low frequency (50 Hz) on DNA of human lymphocytes were investigated. The influence of additional external factors, such as hydrogen peroxide (H2O2) and gamma-irradiation, as well as the repair efficiency in these lymphocytes, was also evaluated. The comet assay, a very sensitive and rapid method for detecting DNA damage at the single cells level was the method used. A significant amount of damage was observed after exposure to the electric fields, compared to the controls. After 2 h incubation at 37 degrees C, a proportion of damage was repaired. H2O2 and gamma-irradiation increased the damage to lymphocytes exposed to pulsed electric fields according to the dose used, while the amount of the repair was proportional to the damage
Progress in the long Nb 3Sn quadrupole R&D by LARP
After the successful test of the first long Nb 3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb 3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled in the LQS01 structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02. © 2011 IEEE
Recommended from our members
Test results and analysis of LQS03 third long Nb3sn quadrupole by LARP
With the first test of LQS03, the long quadrupole (LQ) R&D by LARP (the US LHC Accelerator Research Program, a collaboration of BNL, FNAL, LBNL, and SLAC) is approaching conclusion. LQS03 is the third 3.7-m-long quadrupole, with 90 mm aperture, using a full new set of Nb3Sn coils. The LQS03 coils were made using 108/127 RRP strand (with 108 Nb3Sn subelements) produced by Oxford Superconducting Technology, whereas both previous models used 54/61 RRP strand (with 54 larger Nb3Sn subelements). In this paper, LQS03 test results are presented and discussed. The test results are also compared with the performances of the previous models. Observations are made for the future use of Nb3Sn in accelerator magnets. © 2002-2011 IEEE