9 research outputs found

    The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.</p> <p>Presentation of hypothesis</p> <p>If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor <it>vs </it>outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate.</p> <p>Testing the hypothesis</p> <p>Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude.</p> <p>Implications of the hypothesis</p> <p>Differences in indoor <it>vs </it>outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.</p

    Fecundity and reproductive strategies in deep-sea incirrate octopuses (Cephalopoda: Octopoda).

    No full text
    Coleoid cephalopods show flexibility in their reproductive strategies or mode of spawning, which can range from simultaneous terminal spawning over a short period at the end of the animal’s life to continuous spawning over a long period of the animal’s life. Although a simultaneous terminal spawning strategy is typical of shallow water temperate octopuses, it is not known whether deep-sea octopods would have the same reproductive strategy. The reproductive strategies and fecundity were investigated in nine species of deep-sea incirrate octopuses: Bathypolypus arcticus, Bathypolypus bairdii, Bathypolypus ergasticus, Bathypolypus sponsalis, Bathypolypus valdiviae, Benthoctopus levis, Benthoctopus normani, Benthoctopus sp., and Graneledone verrucosa (total n = 85). Egg-length frequency graphs and multivariate analysis (principal components analysis) suggest that B. sponsalis has a synchronous ovulation pattern and therefore a simultaneous terminal spawning strategy. Although a simultaneous terminal spawning strategy is most likely for B. levis and B. normani, the egg-length frequency graphs and multivariate analysis also suggest a greater variation in egg-lengths which could lead to spawning over an extended period

    Global Population Structure of a Worldwide Pest and Virus Vector: Genetic Diversity and Population History of the Bemisia tabaci Sibling Species Group

    No full text

    Rich table but short life: Diffuse idiopathic skeletal hyperostosis in Danish astronomer Tycho Brahe (1546-1601) and its possible consequences

    No full text

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore