20 research outputs found

    Hypoxia and TGF-β Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment

    Get PDF
    BACKGROUND: Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- beta. We asked whether hypoxia (via HIF-1alpha) and TGF-beta signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed interactions between HIF-1alpha and TGF-beta pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-beta and hypoxia, with effects on the proximal promoters. We inhibited HIF-1alpha and TGF-beta pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells. CONCLUSIONS/SIGNIFICANCE: Hypoxia and TGF-beta signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1alpha and TGF-beta may improve treatment of bone metastases and increase survival

    Synthesis and photovoltaic performance of pyrazinoquinoxaline containing conjugated thiophene-based dendrimers and polymers

    No full text
    Pyrazinoquinoxaline-based building blocks were incorporated into both p-conjugated dendrimers and polymers. The dendrimers were synthesized using a convergent/divergent approach whereas the donor/acceptor copolymers were synthesized via Stille cross-coupling reactions. The structurally defined dendrimers and the p-conjugated polymers were investigated with respect to their optical and electronic properties as well as their performance in photovoltaic devices. Because of the presence of the electron-deficient pyrazinoquinoxaline moiety, the absorption spectra of the materials under investigation were red-shifted with respect to the all thiophene-containing materials. Power conversion efficiencies up to 1.7 and 0.8% were obtained from blends of second-generation dendrimers and polymers with PC71BM, respectively

    Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism

    No full text
    The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis

    Integration of Social, Cultural and Biomedical Strategies into an Existing Couple-Based Behavioral HIV/STI Prevention Intervention: Voices of Latino Male Couples

    Get PDF
    INTRODUCTION:Successful HIV prevention and treatment requires evidence-based approaches that combine biomedical strategies with behavioral interventions that are socially and culturally appropriate for the population or community being prioritized. Although there has been a push for a combination approach, how best to integrate different strategies into existing behavioral HIV prevention interventions remains unclear. The need to develop effective combination approaches is of particular importance for men who have sex with men (MSM), who face a disproportionately high risk of HIV acquisition. MATERIALS AND METHODS:We collaborated with Latino male couples and providers to adapt Connect 'n Unite, an evidence-based intervention for Black male couples, for Latino male couples. We conducted a series of three focus groups, each with two cohorts of couples, and one focus group with providers. A purposive stratified sample of 20 couples (N = 40, divided into two cohorts) and 10 providers provided insights into how to adapt and integrate social, cultural, and biomedical approaches in a couples-based HIV/AIDS behavioral intervention. RESULTS:The majority (N = 37) of the couple participants had no prior knowledge of the following new biomedical strategies: non-occupational post-exposure prophylaxis (nPEP); pre-exposure prophylaxis (PrEP); and HIV self-testing kits. After they were introduced to these biomedical interventions, all participants expressed a need for information and empowerment through knowledge and awareness of these interventions. In particular, participants suggested that we provide PrEP and HIV self-testing kits by the middle or end of the intervention. Providers suggested a need to address behavioral, social and structural issues, such as language barriers; and the promotion of client-centered approaches to increase access to, adaptation of, and adherence to biomedical strategies. Corroborating what couple participants suggested, providers agreed that biomedical strategies should be offered after providing information about these tools. Regarding culturally sensitive and responsive approaches, participants identified stigma and discrimination associated with HIV and sexual identity as barriers to care, language barriers and documentation status as further barriers to care, the couple-based approach as ideal to health promotion, and the need to include family topics in the intervention. DISCUSSION:We successfully adapted an evidence-based behavioral HIV prevention intervention for Latino male couples. The adapted intervention, called Conectando Latinos en Pareja, integrates social, cultural, behavioral and biomedical strategies to address the HIV epidemic among Latino MSM. The study highlights the promise regarding the feasibility of implementing a combination approach to HIV prevention in this population
    corecore