4 research outputs found

    Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    Get PDF
    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding

    Aerosol-assisted production of mesoporous titania microspheres with enhanced photocatalytic activity: the basis of an improved process.

    No full text
    An aerosol-based process was used to prepare mesoporous TiO2 microspheres (MTM) with an average diameter in the range of 0.5−1 μm. The structural characteristics and photocatalytic properties of the synthesized materials were determined. As-prepared MTM materials and those heated in air from 400 to 600°C exhibited mesoporous texture with a narrow size distribution and an inorganic framework that consisted of 4−13 nm anatase crystallites. Pore volumes for the MTM materials were in the range of 0.17−0.34 cm3 g−1. Microspheres heated to 400°C presented a locally ordered mesopore structure and possessed X-ray diffraction d spacings between 9.8 and 17.3 nm. Heating above 400°C resulted in a loss of the mesoscopic order, a decrease of the surface area, retention of the porosity, and an increase of the anatase nanoparticle size to 13 nm. The accessibility of the pore volume was measured by monitoring the uptake of gallic acid (GA) using Fourier transform IR. The MTM materials made excellent catalysts for the photodegradation of GA, with the performance being higher than that of an equivalent sample of Degussa P25. The present MTM materials are advantageous in terms of their ease of separation from the aqueous phase, and hence a novel photocatalytic process is proposed based on separate adsorption and photocatalytic decomposition steps with an improved and more rational use of both catalyst and sunlight. © 2010, American Chemical Societ
    corecore