25 research outputs found
Laser ablation sample transfer for mass spectrometry imaging
© Springer Science+Business Media New York 2015. Infrared laser ablation sample transfer (IR-LAST) is a novel ambient sampling technique for mass spectrometry. In this technique, a pulsed mid-IR laser is used to ablate materials that are collected for mass spectrometry analysis; the material can be a solid sample or deposited on a sample target. After collection, the sample can be further separated or analyzed directly by mass spectrometry. For IR-LAST sample transfer tissue imaging using MALDI mass spectrometry, a tissue section is placed on a sample slide and material transferred to a target slide by scanning the tissue sample under a focused laser beam using transmissionmode (back side) IR laser ablation. After transfer, the target slide is analyzed using MALDI imaging. The spatial resolution is approximately 400 μm and limited by the spread of the laser desorption plume. IR-LAST for MALDI imaging provides several new capabilities including ambient sampling, area to spot concentration of ablated material, multiple ablation and analysis from a single section, and direct deposition on matrix-free nanostructured targets
Late Holocene thermokarst variability inferred from diatoms in a lake sediment record from the Lena Delta, Siberian Arctic
Thermokarst lakes in the Siberian Arctic contain sediment archives that can be used for paleoenvironmental inference. Until now, however, there has been no study from the inner Lena River Delta with a focus on diatoms. The objective of this study was to investigate how the diatom community in a thermokarst lake responded to past limnogeological changes and what specific factors drove variations in the diatom assemblage. We analysed fossil diatom species, organic content, grain-size distribution and elemental composition in a sediment core retrieved in 2009 from a shallow thermokarst lake in the Arga Complex, western Lena River Delta. The core contains a 3,000-year record of sediment accumulation. Shifts in the predominantly benthic and epiphytic diatom species composition parallel changes in sediment characteristics. Paleoenvironmental and limnogeological development, inferred from multiple biological and sedimentological variables, are discussed in the context of four diatom zones, and indicate a strong relation between changes in the diatom assemblage and thermokarst processes. We conclude that limnogeological and thermokarst processes such as lake drainage, rather than direct climate forcing, were the main factors that altered the aquatic ecosystem by influencing, for example, habitat availability, hydrochemistry, and water level