25 research outputs found

    Structural Evolution During Formation and Filling of Self-patterned Nanoholes on GaAs (100) Surfaces

    Get PDF
    Nanohole formation on an AlAs/GaAs superlattice gives insight to both the “drilling” effect of Ga droplets on AlAs as compared to GaAs and the hole-filling process. The shape and depth of the nanoholes formed on GaAs (100) substrates has been studied by the cross-section transmission electron microscopy. The Ga droplets “drill” through the AlAs layer at a much slower rate than through GaAs due to differences in activation energy. Refill of the nanohole results in elongated GaAs mounds along the [01−1] direction. As a result of capillarity-induced diffusion, GaAs favors growth inside the nanoholes, which provides the possibility to fabricate GaAs and AlAs nanostructures

    Fabrication of ultralow-density quantum dots by droplet etching epitaxy

    Get PDF
    Isolated single quantum dots (QDs) enable the investigation of quantum-optics phenomena for the application of quantum information technologies. In this work, ultralow-density InAs QDs are grown by combining droplet etching epitaxy and the conventional epitaxy growth mode. An extreme low density of QDs (∼106 cm−2) is realized by creating low-density self-assembled nanoholes with the high temperature droplet etching epitaxy technique and then nanohole-filling. The preferred nucleation of QDs in nanoholes has been explained by a theoretical model. Atomic force microscopy and the photoluminescence technique are used to investigate the morphological and optical properties of the QD samples. By varying In coverages, the size of InAs QDs can be controlled. Moreover, with a thin GaAs cap layer, the position of QDs remains visible on the sample surface. Such a low density and surface signature of QDs make this growth method promising for single QD investigation and single dot device fabrication

    Influence of Si doping on InAs/GaAs quantum dot solar cells with AlAs cap layers

    Get PDF
    A novel all-optical forward-viewing photoacoustic probe using a flexible coherent fibre-optic bundle and a Fabry- Perot (FP) ultrasound sensor has been developed. The fibre bundle, along with the FP sensor at its distal end, synthesizes a high density 2D array of wideband ultrasound detectors. Photoacoustic waves arriving at the sensor are spatially mapped by optically scanning the proximal end face of the bundle in 2D with a CW wavelength-tunable interrogation laser. 3D images are formed from the detected signals using a time-reversal image reconstruction algorithm. The system has been characterized in terms of its PSF, noise-equivalent pressure and field of view. Finally, the high resolution 3D imaging capability has been demonstrated using arbitrary shaped phantoms and duck embryo

    Si-Doped InAs/GaAs Quantum-Dot Solar Cell With AlAs Cap Layers

    Get PDF
    One of the requirements for strong subbandgap photon absorption in the quantum-dot intermediate-band solar cell (QD-IBSC) is the partial filling of the intermediate band. Studies have shown that the partial filling of the intermediate band can be achieved by introducing Si doping to the QDs. However, the existence of too many Si dopants leads to the formation of point defects and, hence, a reduction of photocurrent. In this study, the effect of Si doping on InAs/GaAs QD solar cells with AlAs cap layers is studied. The AlAs cap layers prevent the formation of the wetting layer during QD growth and reduce the Si doping density needed to achieve QD state filling. Furthermore, the passivation of defect states in the QD with moderate Si doping is demonstrated, which leads to an enhancement of the carrier lifetime in the QDs and, hence, the open-circuit voltage

    Nanoparticles to Nanoholes: Fabrication of Porous GaN with Precisely Controlled Dimension via the Enhanced GaN Decomposition by Au Nanoparticles

    Get PDF
    Porous GaN exhibits unique optoelectronic, chemical, and physical properties such as shift of band gap, increased surface area ratio, excellent chemical, mechanical, and thermal stability as well as efficient luminescence as compared to its bulk counterpart. Herein, we demonstrate a precise, efficient, and still cost-effective method of the fabrication of porous GaN through the enhanced GaN decomposition by using Au nanoparticles (NPs) as a catalyst, in which the size, density, and shape of the pores (nanoholes, NHs) can be precisely controlled. By the thermal annealing assisted with the Au NPs, the NHs are successfully fabricated, and the existence of Au NPs significantly accelerate the GaN decomposition at the interface between the NPs and GaN due to the Ga absorption by the Au NPs. We systematically study the formation mechanism of NHs assisted by the Au NPs by means of annealing temperature, duration, and Au deposition amount, and the results are systematically analyzed and discussed

    InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate

    Get PDF
    Building optoelectronic devices on a Si platform has been the engine behind the development of Si photonics. In particular, the integration of optical interconnects onto Si substrates allows the fabrication of complex optoelectronic circuits, potentially enabling chip-to-chip and system-to-system optical communications at greatly reduced cost and size relative to hybrid solutions. Although significant effort has been devoted to Si light generation and modulation technologies, efficient and electrically pumped Si light emitters have yet to be demonstrated. In contrast, III–V semiconductor devices offer high efficiency as optical sources. Monolithic integration of III–V on the Si platform would thus be an effective approach for realizing Si-based light sources. Here, we describe the first superluminescent light-emitting diode (SLD) monolithically grown on Si substrates. The fabricated two-section InAs/GaAs quantum-dot (QD) SLD produces a close-to-Gaussian emission spectrum of 114 nm centered at 1255 nm wavelength, with a maximum output power of 2.6 mW at room temperature. This work complements our previous demonstration of an InAs/GaAs QD laser directly grown on a Si platform and paves the way for future monolithic integration of III–V light sources required for Si photonics

    Carrier dynamics and recombination in silicon doped InAs/GaAs quantum dot solar cells with AlAs cap layers

    Get PDF
    The effects of doping InAs quantum dots (QDs) with Si on charge carrier dynamics and recombination in the InAs/GaAs quantum dot solar cells with AlAs cap layers was investigated. Non-radiative and radiative recombination paths in the doped cells were identified by changes in emission intensity, longwavelength photovoltage (PV) as well as time-resolved PV and photoluminescence (PL) measurements. We find that the reduction of long-wavelength PV and PL with n-doping is due to the electron population of the QD ground states and shrinkage of the depletion layer. The time constants, derived from the timeresolved PV, grow non-monotonically with increasing of the doping density in the QDs due to redistribution of electrostatic potential in the intrinsic region of p-i-n diode and electron population of EL2 defect states of GaAs barriers. We also find that the ground state emission from the InAs QDs decreases with n-doping. The results show that PL traces depends on carrier dynamic in the top QD layers populated partially with electrons from ionized impurities, whereas PV transients were found to be strongly dependent on recombination via QD and defect states located outside the depletion layer. We conclude that the non-radiative recombination of photogenerated electrons and holes via defects is suppressed due to the spatial separation by the local electric fields in and around doped AlAs/InAs QDs, as the potential profile of the intrinsic region is modulated spatially by built-in charges. The interpretation of experimental data suggests limiting mechanisms in the InAs/GaAs quantum dot solar cells operation and sheds light on possible approaches for their further improvement

    Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates

    Get PDF
    High-performance, multispectral, and large-format infrared focal plane arrays are the long-demanded third-generation infrared technique for hyperspectral imaging, infrared spectroscopy, and target identification. A promising solution is to monolithically integrate infrared photodetectors on a silicon platform, which offers not only low-cost but high-resolution focal plane arrays by taking advantage of the well-established Si-based readout integrated circuits. Here, we report the first InAs/GaAs quantum dot (QD) infrared photodetectors monolithically integrated on silicon substrates by molecular beam epitaxy. The III–V photodetectors are directly grown on silicon substrates by using a GaAs buffer, which reduces the threading dislocation density to ∼106 cm–2. The high-quality QDs grown on Si substrates have led to long photocarrier relaxation time and low dark current density. Mid-infrared photodetection up to ∼8 μm is also achieved at 80 K. This work demonstrates that III–V photodetectors can directly be integrated with silicon readout circuitry for realizing large-format focal plane arrays as well as mid-infrared photonics in silicon

    1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters

    Get PDF
    Lattice-mismatched 1.7eV Al0.2Ga0.8As photovoltaic solar cells have been monolithically grown on Si substrates using Solid Source Molecular Beam Epitaxy (SSMBE). As a consequence of the 4%-lattice-mismatch, threading dislocations (TDs) nucleate at the interface between the Si substrate and III-V epilayers and propagate to the active regions of the cell. There they act as recombination centers and degrade the performances of the cell. In our case, direct AlAs/GaAs superlattice growth coupled with InAlAs/AlAs strained layer superlattice (SLS) dislocation filter layers (DFLSs) have been used to reduce the TD density from 1×10^9cm^-2 to 1(±0.2)×10^7cm^-2. Lattice-matched Al0.2Ga0.8As cells have also been grown on GaAs as a reference. The best cell grown on silicon exhibits a Voc of 964mV, compared with a Voc of 1128mV on GaAs. Fill factors of respectively 77.6% and 80.2% have been calculated. Due to the lack of an anti-reflection coating and the non-optimized architecture of the devices, relatively low Jsc have been measured: 7.30mA.cm^-2 on Si and 6.74mA.cm^-2 on GaAs. The difference in short-circuit currents is believed to be caused by a difference of thickness between the samples due to discrepancies in the calibration of the MBE prior to each growth. The bandgap-voltage offset of the cells, defined as Eg/q-Voc, is relatively high on both substrates with 736mV measured on Si versus 572mV on GaAs. The non-negligible TD density partly explains this result on Si. On GaAs, non-ideal growth conditions are possibly responsible for these suboptimal performances

    Al0.2Ga0.8As solar cells monolithically grown on Si and GaAs by MBE for III-V/Si tandem dual-junction applications

    Get PDF
    Al0.2Ga0.8As photovoltaic solar cells have been monolithically grown on silicon substrates by Molecular Beam Epitaxy. Due to the 4% lattice mismatch between AlGaAs and Si, Threading Dislocations (TDs) nucleate at the III-V/Si interface and propagate to the active region of the cells where they act as recombination centers, reducing the performances of the devices. In order to reduce the Threading Dislocation Density (TDD) in the active layers of the cells, InAlAs Strained Layer Superlattice (SLS) Dislocation Filter Layers (DFLs) have been used. For one of the samples, in-situ Thermal Cycle Annealing (TCA) steps have additionally been performed during growth. For comparison purposes, reference Al0.2Ga0.8As solar cells have been grown lattice-matched on GaAs. For the sample grown on Si without TCA, the TDD has been reduced from over 7×109cm-2 at the III-V/Si interface to 3×107cm-2 in the base of the cells. With TCA, the TDD has been reduced throughout the sample from over 3×109cm-2 in the initial epilayers to 8(±2)×106cm-2 in the base of the cells. For the best devices, the Voc improves from 833mV on Si without TCA to 895mV using TCA, compared with 1070mV for the reference sample grown lattice-matched on GaAs. Similarly the fill factor improves from 73.7% on Si without TCA to 74.8% using TCA, compared with 78.4% on GaAs. The high bandgap-voltage offset obtained both on Si and GaAs indicates a non-optimal bulk AlGaAs material quality due to non-ideal growth conditions
    corecore