33 research outputs found

    Strategies to prevent intraoperative lung injury during cardiopulmonary bypass

    Get PDF
    During open heart surgery the influence of a series of factors such as cardiopulmonary bypass (CPB), hypothermia, operation and anaesthesia, as well as medication and transfusion can cause a diffuse trauma in the lungs. This injury leads mostly to a postoperative interstitial pulmonary oedema and abnormal gas exchange. Substantial improvements in all of the above mentioned factors may lead to a better lung function postoperatively. By avoiding CPB, reducing its time, or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB, beneficial effects on lung function are reported. In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated, and material-independent sources of blood activation, a better postoperative lung function is observed. Meticulous myocardial protection by using hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the cornerstones of postoperative lung function. The partial restoration of pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB, and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs. The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function. In a similar way, reducing the use of cardiotomy suction device, as well as the contact-time between free blood and pericardium, it is expected that the postoperative lung function will be improved

    Why Pleiotropic Interventions are Needed for Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) involves a complex pathological cascade thought to be initially triggered by the accumulation of β-amyloid (Aβ) peptide aggregates or aberrant amyloid precursor protein (APP) processing. Much is known of the factors initiating the disease process decades prior to the onset of cognitive deficits, but an unclear understanding of events immediately preceding and precipitating cognitive decline is a major factor limiting the rapid development of adequate prevention and treatment strategies. Multiple pathways are known to contribute to cognitive deficits by disruption of neuronal signal transduction pathways involved in memory. These pathways are altered by aberrant signaling, inflammation, oxidative damage, tau pathology, neuron loss, and synapse loss. We need to develop stage-specific interventions that not only block causal events in pathogenesis (aberrant tau phosphorylation, Aβ production and accumulation, and oxidative damage), but also address damage from these pathways that will not be reversed by targeting prodromal pathways. This approach would not only focus on blocking early events in pathogenesis, but also adequately correct for loss of synapses, substrates for neuroprotective pathways (e.g., docosahexaenoic acid), defects in energy metabolism, and adverse consequences of inappropriate compensatory responses (aberrant sprouting). Monotherapy targeting early single steps in this complicated cascade may explain disappointments in trials with agents inhibiting production, clearance, or aggregation of the initiating Aβ peptide or its aggregates. Both plaque and tangle pathogenesis have already reached AD levels in the more vulnerable brain regions during the “prodromal” period prior to conversion to “mild cognitive impairment (MCI).” Furthermore, many of the pathological events are no longer proceeding in series, but are going on in parallel. By the MCI stage, we stand a greater chance of success by considering pleiotropic drugs or cocktails that can independently limit the parallel steps of the AD cascade at all stages, but that do not completely inhibit the constitutive normal functions of these pathways. Based on this hypothesis, efforts in our laboratories have focused on the pleiotropic activities of omega-3 fatty acids and the anti-inflammatory, antioxidant, and anti-amyloid activity of curcumin in multiple models that cover many steps of the AD pathogenic cascade (Cole and Frautschy, Alzheimers Dement 2:284–286, 2006)

    Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype

    No full text
    Purpose Osteoarthritis (OA) is a common and heterogeneous arthritic disorder. Patients suffer pain and their joints are characterized by articular cartilage loss and osteophyte formation. Risk factors for OA include age and obesity with inflammation identified as a key mediator of disease pathogenesis. Interleukin-17A (IL-17) is a pro-inflammatory cytokine that has been implicated in inflammatory diseases such as rheumatoid arthritis. IL-17 can upregulate expression of inflammatory cytokines and adipocytokines. The aim of this study was to evaluate IL-17 levels in the synovial fluid of patients with end-stage knee and hip OA in relation to inflammation- and pain-related cytokines and adipocytokines in synovial fluid and serum, and clinical and radiographic disease parameters. Methods This is a cross-sectional study of 152 patients undergoing total hip and knee arthroplasty for OA. IL-17, IL-6, leptin, adiponectin, visfatin, resistin, C-C Motif Chemokine Ligand 2 (CCL2), C-C Motif Chemokine Ligand 7 (CCL7) and nerve growth factor (NGF) protein levels were measured in synovial fluid and serum using enzyme-linked immunosorbent assay (ELISA). Baseline characteristics included age, sex, body mass index, co-morbidities, pain and function, and radiographic analyses (OA features, K&amp;L; grade, minimal joint space width). Results 14 patients (9.2%) had detectable IL-17 in synovial fluid. These patients had significantly higher median concentrations of IL-6, leptin, resistin, CCL7 and NGF. Osteophytes, sclerosis and minimum joint space width were significantly reduced in patients with detectable IL- 17 in synovial fluid. No differences were found in pain, function and comorbidities. IL-17 concentrations in synovial fluid and serum were moderately correlated (r = 0.482). Conclusion The presence of IL-17 in the synovial fluid therefore identifies a substantial subset of primary end-stage OA patients with distinct biological and clinical features. Stratification of patients on the basis of IL-17 may identify those responsive to therapeutic targeting.</p
    corecore