37 research outputs found

    HIV patients treated with low-dose prednisolone exhibit lower immune activation than untreated patients

    Get PDF
    HIV-associated general immune activation is a strong predictor for HIV disease progression, suggesting that chronic immune activation may drive HIV pathogenesis. Consequently, immunomodulating agents may decelerate HIV disease progression. In an observational study, we determined immune activation in HIV patients receiving low-dose (5 mg/day) prednisolone with or without highly-active antiretroviral therapy (HAART) compared to patients without prednisolone treatment. Lymphocyte activation was determined by flow cytometry detecting expression of CD38 on CD8(+) T cells. The monocyte activation markers sCD14 and LPS binding protein (LBP) as well as inflammation markers soluble urokinase plasminogen activated receptor (suPAR) and sCD40L were determined from plasma by ELISA. CD38-expression on CD8+ T lymphocytes was significantly lower in prednisolone-treated patients compared to untreated patients (median 55.40% [percentile range 48.76-67.70] versus 73.34% [65.21-78.92], p = 0.0011, Mann-Whitney test). Similarly, we detected lower levels of sCD14 (3.6 μg/ml [2.78-5.12] vs. 6.11 μg/ml [4.58-7.70]; p = 0.0048), LBP (2.18 ng/ml [1.59-2.87] vs. 3.45 ng/ml [1.84-5.03]; p = 0.0386), suPAR antigen (2.17 μg/ml [1.65-2.81] vs. 2.56 μg/ml [2.24-4.26]; p = 0.0351) and a trend towards lower levels of sCD40L (2.70 pg/ml [1.90-4.00] vs. 3.60 pg/ml [2.95-5.30]; p = 0.0782). Viral load in both groups was similar (0.8 × 105 ng/ml [0.2-42.4 × 105] vs. 1.1 × 105 [0.5-12.2 × 105]; p = 0.3806). No effects attributable to prednisolone were observed when patients receiving HAART in combination with prednisolone were compared to patients who received HAART alone.\ud Patients treated with low-dose prednisolone display significantly lower general immune activation than untreated patients. Further longitudinal studies are required to assess whether treatment with low-dose prednisolone translates into differences in HIV disease progression

    Polymyxin B has multiple blocking actions on the ATP-sensitive potassium channel in insulin-secreting cells

    No full text
    The action of polymyxin B (0.1 μM) on ATP-sensitive K+ (K+ ATP) channels in RINm5F insulin-secreting cells was investigated by patch-clamp techniques. Using inside-out patches, open-cells and outside-out patches, polymyxin B was found to block K+ ATP channels by, on average, approximately 90-95 of the initial control level of channel activity. The effects were rapid in onset, sustained and readily reversible. Similar effects were found in patches excised from cells pretreated overnight with 1 μM of the phorbol ester phorbol myristate acetate (PMA). External block of channels was associated with a marked decrease in single-channel current amplitude, whereas these effects were not seen when polymyxin B was added to the inside face of the membrane. In patches bathed with internally applied ATP (0.5 mM) and ADP (0.5 mM), polymyxin B inhibited channels but its actions were not reversible upon removal of the compound. However, when the same protocol was undertaken upon cells pre-treated with PMA, the effects of polymyxin B were readily reversed. Our data suggests that polymyxin B is a novel modulator of K+ ATP channels, exhibiting multiple blocking actions that may possibly involve a direct effect upon the channel and indirect effects mediated through the inhibition of endogenous protein kinase(s). © 1994 Springer-Verlag
    corecore