25,114 research outputs found

    Three-dimensional Imaging of Microstructure in Gold Nanocrystals

    Get PDF
    X-ray diffraction using a coherent beam involves the mutual interference among all the extremities of small crystals. The continuous diffraction pattern so produced can be phased because it can be oversampled. We have thus obtained three-dimensional images of the interiors of Au nanocrystals that show 50 nm wide bands of contrast with f111g orientation that probably arise from internal twinning by dynamic recrystallization during their formation at high temperature

    Reconstruction of the Shapes of Gold Nanocrystals using Coherent X-ray Diffraction

    Get PDF
    Inverse problems arise frequently in physics: The magnitude of the Fourier transform of some function is measurable, but not its phase. The “phase problem” in crystallography arises because the number of discrete measurements (Bragg peak intensities) is only half the number of unknowns (electron density points in space). Sayre first proposed that oversampling of diffraction data should allow a solution, and this has recently been demonstrated. Here we report the successful phasing of an oversampled hard x-ray diffraction pattern measured from a single nanocrystal of gold

    On the inverse Compton scattering model of radio pulsars

    Get PDF
    Some characteristics of the inverse Compton scattering (ICS) model are reviewed. At least the following properties of radio pulsars can be reproduced in the model: core or central emission beam, one or two hollow emission cones, different emission heights of these components, diverse pulse profiles at various frequencies, linear and circular polarization features of core and cones.Comment: 5 pages, no figures, LaTeX, a proceeding paper for Pacific Rim Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin

    Predicting Flux And Pressure Relationships of Large Scale Filtration with USD Model Inputs: Method and application

    Get PDF
    Ultra Scale-Down tools have demonstrated the huge benefit for rapid process development with reduced material requirement and better solutions. In this poster, a method was reported to predict the flux and transmembrane pressure relationships of a diafiltration application for a crossflow filtration (CFF) process, based on data generated using an Ultra Scale-Down (USD) device that uses dead-end mode of operation to mimic CFF. A new flux prediction protocol was developed to accurately determine the system resistance of large scale crossflow filtration (CFF) systems, and, to predict CFF performance using USD data. Antibody fragment (Fab’) is expressed in E. coli as an intracellular product and E.coli homogenate was used for scale-up studies and to validate the prediction results. Predicted and actual flux-pressure drop and transmission data showed good agreement. Wall shear rate correlations have been established for both the lab scale cassette and the USD device, and a mimic has been developed by operating both scales at equivalent membrane averaged shear rates

    A Computation in a Cellular Automaton Collider Rule 110

    Full text link
    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.Comment: 39 pages, 32 figures, 3 table

    Ligation of protease-activated receptor 1 enhances alpha(v)beta(6) integrin-dependent TGF-beta activation and promotes acute lung injury

    Get PDF
    Activation of latent TGF-beta by the alpha(v)beta(6) integrin is a critical step in the development of acute lung injury. However, the mechanism by which a alpha(v)beta(6)-mediated TGF-beta activation is regulated has not been identified. We show that thrombin, and other agonists of protease-activated receptor 1(PAR1), activate TGF-beta in an alpha(v)beta(6) integrin-specific manner. This effect is PART specific and is mediated by RhoA and Rho kinase. Intratracheal instillation of the PART-specific peptide TFLLRN increases lung edema during high-tidal-volume ventilation, and this effect is completely inhibited by a blocking antibody against the alpha(v)beta(6) integrin. Instillation of TFLLRN during high-tidal-volume ventilation is associated with increased pulmonary TGF-beta activation; however, this is not observed in Itgb6(-/-) mice. Furthermore, Itgb6(-/-) mice are also protected from ventilator-induced lung edema. We also demonstrate that pulmonary edema and TGF-beta activity are similarly reduced in Par1(-/-) mice following bleomycin-induced lung injury. These results suggest that PART-mediated enhancement of a alpha(v)beta(6)-dependent TGF-beta activation could be one mechanism by which activation of the coagulation cascade contributes to the development of acute lung injury, and they identify PART and the alpha(v)beta(6) integrin as potential therapeutic targets in this condition

    Primary and submovement control of aiming in C6 tetraplegics following posterior deltoid transfer

    Get PDF
    Background: Upper limb motor control in fast, goal-directed aiming is altered in tetraplegics following posterior-deltoid musculotendinous transfer. Specifically, movements have similar end-point accuracy but longer duration and lower peak velocity than those of age-matched, neurotypical controls. Here, we examine in detail the interplay between primary movement and submovement phases in five C6 tetraplegic and five control participants. Methods: Aiming movements were performed in two directions (20 cm away or toward), with or without vision. Trials that contained a submovement phase (i.e., discontinuity in velocity, acceleration or jerk) were identified. Discrete kinematic variables were then extracted on the primary and submovements phases. Results: The presence of submovements did not differ between the tetraplegic (68%) and control (57%) groups, and almost all submovements resulted from acceleration and jerk discontinuities. Tetraplegics tended to make a smaller amplitude primary movement, which had lower peak velocity and greater spatial variability at peak velocity. This was followed by a larger amplitude and longer duration secondary submovement. Peak velocity of primary movement was not related to submovement incidence. Together, the primary and submovement phases of both groups were equally effective in reducing end-point error. Conclusions: C6 tetraplegic participants exhibit some subtle differences in measures of motor behaviour compared to control participants, but importantly feedforward and feedback processes work effectively in combination to achieve accurate goal-directed aiming. Keywords: Tetraplegia, Aiming, Submovement, Upper-limb control, Muscle transfe
    • …
    corecore