29 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    New data on the Vrancea Nappe (Moldavidian Basin, Outer Carpathian Domain, Romania): paleogeographic and geodynamic reconstructions

    No full text
    A study has been performed on the Cretaceous to Early Miocene succession of the Vrancea Nappe (Outer Carpathians, Romania), based on field reconstruction of the stratigraphic record, mineralogical-petrographic and geochemical analyses. Extra-basinal clastic supply and intra-basinal autochthonous deposits have been differentiated, appearing laterally inter-fingered and/or interbedded. The main clastic petrofacies consist of calcarenites, sub-litharenites, quartzarenites, sub-arkoses, and polygenic conglomerates derived from extra-basinal margins. An alternate internal and external provenance of the different supplies is the result of the paleogeographic re-organization of the basin/margins system due to tectonic activation and exhumation of rising areas. The intra-basinal deposits consist of black shales and siliceous sediments (silexites and cherty beds), evidencing major environmental changes in the Moldavidian Basin. Organic-matter-rich black shales were deposited during anoxic episodes related to sediment starvation and high nutrient influx due to paleogeographic isolation of the basin caused by plate drifting. The black shales display relatively high contents in sub-mature to mature, Type II lipidic organic matter (good oil and gas-prone source rocks) constituting a potentially active petroleum system. The intra-basinal siliceous sediments are related to oxic pelagic or hemipelagic environments under tectonic quiescence conditions although its increase in the Oligocene part of the succession can be correlated with volcanic supplies. The integration of all the data in the “progressive reorientation of convergence direction” Carpathian model, and their consideration in the framework of a foreland basin, led to propose some constrains on the paleogeographic-geodynamic evolutionary model of the Moldavidian Basin from the Late Cretaceous to the Burdigalian.This research was supported by Urbino University grant (responsible F. Guerrera), Italy; CGL2009-09249 and CGL2011-30153-CO2-02 research projects (Spanish Ministry of Education and Science), Research Groups and projects of the Generalitat Valenciana and from Alicante University (CTMA-IGA Spain); Research Contr. IDEI 436/01.10.2007 (CNCSIS-Romania)

    A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea

    No full text
    The Black Sea is the world's largest anoxic basin; it is also a contemporary analogue of the environment in which carbonaceous shales and petroleum source beds formed. Recently, Repeta et al. reported that anoxygenic photosynthesis may be an important component of carbon cycling in the present Black Sea, owing to a shoaling of the chemocline and consequent penetration of the photic zone by anaerobic waters in the past few decades. It has been suggested4 that this was due to an anthropogenic decrease in freshwater input to the Black Sea, although natural causes were not ruled out. Here we report the distributions of sequestered photosynthetic pigments in eight core samples of sediments from the Black Sea ranging in age from zero to 6,200 years before the present. Our results show that photosynthetic green sulphur bacteria (Clorobiaceae) have been active in the Black Sea for substantial periods of time in the past. This finding indicates that the penetration of the photic zone by anaerobic waters is not a recent phenomenon, and suggests that natural causes for shoaling of the chemocline are more likely than anthropogenic ones
    corecore