22 research outputs found

    Pathogenesis of Candida albicans Infections in the Alternative Chorio-Allantoic Membrane Chicken Embryo Model Resembles Systemic Murine Infections

    Get PDF
    Alternative models of microbial infections are increasingly used to screen virulence determinants of pathogens. In this study, we investigated the pathogenesis of Candida albicans and C. glabrata infections in chicken embryos infected via the chorio-allantoic membrane (CAM) and analyzed the virulence of deletion mutants. The developing immune system of the host significantly influenced susceptibility: With increasing age, embryos became more resistant and mounted a more balanced immune response, characterized by lower induction of proinflammatory cytokines and increased transcription of regulatory cytokines, suggesting that immunopathology contributes to pathogenesis. While many aspects of the chicken embryo response resembled murine infections, we also observed significant differences: In contrast to systemic infections in mice, IL-10 had a beneficial effect in chicken embryos. IL-22 and IL-17A were only upregulated after the peak mortality in the chicken embryo model occurred; thus, the role of the Th17 response in this model remains unclear. Abscess formation occurs frequently in murine models, whereas the avian response was dominated by granuloma formation. Pathogenicity of the majority of 15 tested C. albicans deletion strains was comparable to the virulence in mouse models and reduced virulence was associated with significantly lower transcription of proinflammatory cytokines. However, fungal burden did not correlate with virulence and for few mutants like bcr1Δ and tec1Δ different outcomes in survival compared to murine infections were observed. C. albicans strains locked in the yeast stage disseminated significantly more often from the CAM into the embryo, supporting the hypothesis that the yeast morphology is responsible for dissemination in systemic infections. These data suggest that the pathogenesis of C. albicans infections in the chicken embryo model resembles systemic murine infections but also differs in some aspects. Despite its limitations, it presents a useful alternative tool to pre-screen C. albicans strains to select strains for subsequent testing in murine models

    HSV-1 latent rabbits shed viral DNA into their saliva

    Get PDF
    BACKGROUND: Rabbits latent with HSV-1 strain McKrae spontaneously shed infectious virus and viral DNA into their tears and develop recurrent herpetic-specific corneal lesions. The rabbit eye model has been used for many years to assess acute ocular infections and pathogenesis, antiviral efficacy, as well as latency, reactivation, and recurrent eye diseases. This study used real-time PCR to quantify HSV-1 DNA in the saliva and tears of rabbits latent with HSV-1 McKrae. METHODS: New Zealand white rabbits used were latent with HSV-1 strain McKrae and had no ocular or oral pathology. Scarified corneas were topically inoculated with HSV-1. Eye swabs and saliva were taken from post inoculation (PI) days 28 through 49 (22 consecutive days). Saliva samples were taken four times each day from each rabbit and the DNA extracted was pooled for each rabbit for each day; one swab was taken daily from each eye and DNA extracted. Real-time PCR was done on the purified DNA samples for quantification of HSV-1 DNA copy numbers. Data are presented as copy numbers for each individual sample, plus all the copy numbers designated as positive, for comparison between left eye (OS), right eye (OD), and saliva. RESULTS: The saliva and tears were taken from 9 rabbits and from 18 eyes and all tested positive at least once. Saliva was positive for HSV-1 DNA at 43.4% (86/198) and tears were positive at 28.0% (111/396). The saliva positives had 48 episodes and the tears had 75 episodes. The mean copy numbers ± the SEM for HSV-1 DNA in saliva were 3773 ± 2019 and 2294 ± 869 for tears (no statistical difference). CONCLUSION: Rabbits latent with strain McKrae shed HSV-1 DNA into their saliva and tears. HSV-1 DNA shedding into the saliva was similar to humans. This is the first evidence that documents HSV-1 DNA in the saliva of latent rabbits
    corecore