2,910 research outputs found

    The structure of Abell 1351: a bimodal galaxy cluster with peculiar diffuse radio emission

    Full text link
    We aim to review the internal structure and dynamics of the Abell 1351 cluster, shown to host a radio halo with a quite irregular shape. Our analysis is based on radial velocity data for 135 galaxies obtained at the Telescopio Nazionale Galileo. We combine galaxy velocities and positions to select 95 cluster galaxy members and analyse the internal dynamics of the whole cluster. We also examine X-ray data retrieved from Chandra and XMM archives. We measure the cluster redshift, =0.325, the line-of-sight (LOS) velocity dispersion, \sigma_v~1500 km/s, and the X-ray temperature, kT~9 keV. From both X-ray and optical data independently, we estimate a large cluster mass, in the 1--4 101510^{15} M_\odot range. We attribute the extremely high value of \sigma_v to the bimodality in the velocity distribution. We find evidence of a significant velocity gradient and optical 3D substructure. The X-ray analysis also shows many features in favour of a complex cluster structure, probably supporting an ongoing merger of substructures in Abell 1351. The observational scenario agrees with the presence of two main subclusters in the northern region, each with its brightest galaxy (BCG1 and BCG2), detected as the two most important X-ray substructures with a rest-frame LOS velocity difference of \Delta v~2500 km/s (in the rest frame) and probably being in large part aligned with the LOS. We conclude that Abell 1351 is a massive merging cluster. The details of the cluster structure allow us to interpret the quite asymmetric radio halo as a `normal' halo plus a southern relic, strongly supporting a previous suggestion based only on inspection of radio and preliminary X-ray data.Comment: 13 pages, 13 figures, 1 tabl

    A textbook example of ram-pressure stripping in the Hydra A/A780 cluster

    Get PDF
    In the current epoch, one of the main mechanisms driving the growth of galaxy clusters is the continuous accretion of group-scale halos. In this process, the ram pressure applied by the hot intracluster medium on the gas content of the infalling group is responsible for stripping the gas from its dark-matter halo, which gradually leads to the virialization of the infalling gas in the potential well of the main cluster. Using deep wide-field observations of the poor cluster Hydra A/A780 with XMM-Newton and Suzaku, we report the discovery of an infalling galaxy group 1.1 Mpc south of the cluster core. The presence of a substructure is confirmed by a dynamical study of the galaxies in this region. A wake of stripped gas is trailing behind the group over a projected scale of 760 kpc. The temperature of the gas along the wake is constant at kT ~ 1.3 keV, which is about a factor of two less than the temperature of the surrounding plasma. We observe a cold front pointing westwards compared to the peak of the group, which indicates that the group is currently not moving in the direction of the main cluster, but is moving along an almost circular orbit. The overall morphology of the group bears remarkable similarities with high-resolution numerical simulations of such structures, which greatly strengthens our understanding of the ram-pressure stripping process

    Life Cycle Assessment of electricity production from refuse derived fuel: A case study in Italy

    Get PDF
    Biomasses and bio-waste have an important role in decarbonizing the European energy mix, the latter contributing to the transition towards a circular economy. In particular, Refuse Derived Fuel (RFD) - a biofuel obtained from dry residue of waste – appears a really interesting energy option. In this framework this study aims at assessing the environmental profile of electricity generation from RDF in Italy, comparing two different kinds of RDF production and combustion plants. The functional unit is 1 kWh of net electricity from RDF delivered to the grid. Two Italian plants are examined: one located in Ravenna (RDF is produced in a direct flow treatment plant) and the other one in Bergamo (RDF is produced in a unique flow treatment plant and electricity is generated in a cogenerator). Results show that, comparing the plants, it is not possible to identify an option for RDF production or electricity generation characterized by lowest impacts for all the examined impact categories. However, cogeneration process and the avoided burdens due to the valorisation of ferrous metals and dry fractions during RDF production can reduce most of the environmental impacts. A dominance analysis reveals that chimney direct emissions generated during RDF combustion significantly contribute to some impact categories, as well as electricity consumption during RDF production. Furthermore, disposal of incineration wastes is a relevant contributor to human toxicity and freshwater eutrophication. The eco-profile of electricity from RDF is compared with electricity from the Italian grid and from multi-Si PV. The comparison highlights that electricity from RDF performs worse for relevant environmental impact categories such as climate change, human toxicity and photochemical oxidant formation. On the other hand, electricity from RDF performs better than electricity from the grid and from photovoltaic for resource depletion, an impact category of growing importance in the framework of circular economy

    Numerical simulation study of the dynamical behavior of the Niedermayer algorithm

    Full text link
    We calculate the dynamic critical exponent for the Niedermayer algorithm applied to the two-dimensional Ising and XY models, for various values of the free parameter E0E_0. For E0=1E_0=-1 we regain the Metropolis algorithm and for E0=1E_0=1 we regain the Wolff algorithm. For 1<E0<1-1<E_0<1, we show that the mean size of the clusters of (possibly) turned spins initially grows with the linear size of the lattice, LL, but eventually saturates at a given lattice size L~\widetilde{L}, which depends on E0E_0. For L>L~L>\widetilde{L}, the Niedermayer algorithm is equivalent to the Metropolis one, i.e, they have the same dynamic exponent. For E0>1E_0>1, the autocorrelation time is always greater than for E0=1E_0=1 (Wolff) and, more important, it also grows faster than a power of LL. Therefore, we show that the best choice of cluster algorithm is the Wolff one, when compared to the Nierdermayer generalization. We also obtain the dynamic behavior of the Wolff algorithm: although not conclusive, we propose a scaling law for the dependence of the autocorrelation time on LL.Comment: Accepted for publication in Journal of Statistical Mechanics: Theory and Experimen

    SigMate: a MATLAB-based automated tool for extracellular neuronal signal processing and analysis

    Get PDF
    Rapid advances in neuronal probe technology for multisite recording of brain activity have posed a significant challenge to neuroscientists for processing and analyzing the recorded signals. To be able to infer meaningful conclusions quickly and accurately from large datasets, automated and sophisticated signal processing and analysis tools are required. This paper presents a Matlab-based novel tool, “SigMate”, incorporating standard methods to analyze spikes and EEG signals, and in-house solutions for local field potentials (LFPs) analysis. Available modules at present are – 1. In-house developed algorithms for: data display (2D and 3D), file operations (file splitting, file concatenation, and file column rearranging), baseline correction, slow stimulus artifact removal, noise characterization and signal quality assessment, current source density (CSD) analysis, latency estimation from LFPs and CSDs, determination of cortical layer activation order using LFPs and CSDs, and single LFP clustering; 2. Existing modules: spike detection, sorting and spike train analysis, and EEG signal analysis. SigMate has the flexibility of analyzing multichannel signals as well as signals from multiple recording sources. The in-house developed tools for LFP analysis have been extensively tested with signals recorded using standard extracellular recording electrode, and planar and implantable multi transistor array (MTA) based neural probes. SigMate will be disseminated shortly to the neuroscience community under the open-source GNU-General Public License

    Spectroscopic confirmation of clusters from the ESO imaging survey

    Get PDF
    We measure redshifts for 67 galaxies in the field of six cluster candidates from the ESO Imaging Survey (EIS). The cluster candidates are selected in the EIS patches C and D among those with estimated mean redshifts between 0.5 and 0.7. The observations were made with EFOSC2 at the 3.6m ESO telescope. In the six candidate cluster fields, we identify 19 possible sets of 2 to 7 galaxies in redshift space. In order to establish which of the 19 sets are likely to correspond to real dense systems we compare our counts with those expected from a uniform distribution of galaxies with given luminosity function. In order to take into account the effect of the Large Scale Structure, we modulate the probability computed from the luminosity function with random samplings of the Canada-France Redshift Survey. We find that four out of six candidate EIS clusters are likely to correspond to real systems in redshift space (> 95 % confidence level). Two of these systems have mean redshift in agreement with the redshift estimate given by the matched filter algorithm. The other two systems have significantly lower redshifts. We discuss the implications of our results in the context of our ongoing research projects aimed at defining high-redshift optically-selected cluster samples.Comment: To appear in A&A, main journal -- 12 pages, 9 figure

    Uncertainties in stellar evolution models: convective overshoot

    Full text link
    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban
    corecore