20,895 research outputs found

    On the Performance Limits of Pilot-Based Estimation of Bandlimited Frequency-Selective Communication Channels

    Full text link
    In this paper the problem of assessing bounds on the accuracy of pilot-based estimation of a bandlimited frequency selective communication channel is tackled. Mean square error is taken as a figure of merit in channel estimation and a tapped-delay line model is adopted to represent a continuous time channel via a finite number of unknown parameters. This allows to derive some properties of optimal waveforms for channel sounding and closed form Cramer-Rao bounds

    Large Deviations in the Free-Energy of Mean-Field Spin-Glasses

    Full text link
    We compute analytically the probability distribution of large deviations in the spin-glass free energy for the Sherrington-Kirkpatrick mean field model, i.e. we compute the exponentially small probability of finding a system with intensive free energy smaller than the most likely one. This result is obtained by computing the average value of the partition function to the power nn as a function of nn. At zero temperature this absolute prediction displays a remarkable quantitative agreement with the numerical data.Comment: version to be submitted to PRL plus full power series in the appendix, added references and minor correction

    Safe discontinuation of nilotinib in a patient with chronic myeloid leukemia: a case report

    Get PDF
    Case presentation. We report the case of a 64-year-old Caucasian man diagnosed with chronic-phase chronic myeloid leukemia in April 2005. After 4 years of treatment with imatinib, he became intolerant to the drug and was switched to nilotinib. Two years later, he decided to stop nilotinib. Undetectable molecular response persisted for 30 months after discontinuation of the drug. Introduction. Although there is a considerable amount of data in the literature on safe discontinuation of first-generation tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia, little is known about discontinuation of second-generation tyrosine kinase inhibitor therapy. Most previous studies have been focused on dasatinib, and the few cases of nilotinib withdrawal that have been reported had a median follow-up of 12 months. To the best of our knowledge, the present report is the first to describe nilotinib withdrawal with 30 months of follow-up. Conclusion: Our present case suggests that nilotinib withdrawal is safe for patients with chronic myeloid leukemia who achieve a stable undetectable molecular response. Our patient was homozygous for killer immunoglobulin-like receptor haplotype A, previously reported to be a promising immunogenetic marker for undetectable molecular response. We recommend additional studies to investigate patient immunogenetic profiles and their potential role in complete response to therap

    Beyond quantum microcanonical statistics

    Full text link
    Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e. the wavefunction, of an isolated system which is determined to calculate molecular properties and to consider the time evolution according to the unitary Schr\"odinger equation. On the other hand a mixed state, i.e. a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem

    Map-Aware Models for Indoor Wireless Localization Systems: An Experimental Study

    Full text link
    The accuracy of indoor wireless localization systems can be substantially enhanced by map-awareness, i.e., by the knowledge of the map of the environment in which localization signals are acquired. In fact, this knowledge can be exploited to cancel out, at least to some extent, the signal degradation due to propagation through physical obstructions, i.e., to the so called non-line-of-sight bias. This result can be achieved by developing novel localization techniques that rely on proper map-aware statistical modelling of the measurements they process. In this manuscript a unified statistical model for the measurements acquired in map-aware localization systems based on time-of-arrival and received signal strength techniques is developed and its experimental validation is illustrated. Finally, the accuracy of the proposed map-aware model is assessed and compared with that offered by its map-unaware counterparts. Our numerical results show that, when the quality of acquired measurements is poor, map-aware modelling can enhance localization accuracy by up to 110% in certain scenarios.Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Wireless Communications, 201
    • …
    corecore