142 research outputs found

    Entanglement generation via a completely mixed nuclear spin bath

    Full text link
    We show that qubits coupled sequentially to a mesoscopic static completely mixed spin bath via the Heisenberg interaction can become highly entangled. Straightforward protocols for the generation of multipartite entangled (Greenberger-Horne-Zeilinger-)states are presented. We show the feasibility of an experimental realization in a quantum dot by the hyperfine interaction of an electron with the nuclear spins.Comment: 4+pages, 3 figure

    How to measure squeezing and entanglement of Gaussian states without homodyning

    Full text link
    We propose a scheme for measuring the squeezing, purity, and entanglement of Gaussian states of light that does not require homodyne detection. The suggested setup only needs beam splitters and single-photon detectors. Two-mode entanglement can be detected from coincidences between photodetectors placed on the two beams.Comment: 4 pages, 2 figures, RevTe

    Entanglement of Pure Two-Mode Gaussian States

    Full text link
    The entanglement of general pure Gaussian two-mode states is examined in terms of the coefficients of the quadrature components of the wavefunction. The entanglement criterion and the entanglement of formation are directly evaluated as a function of these coefficients, without the need for deriving local unitary transformations. These reproduce the results of other methods for the special case of symmetric pure states which employ a relation between squeezed states and Einstein-Podolsky-Rosen correlations. The modification of the quadrature coefficients and the corresponding entanglement due to application of various optical elements is also derived.Comment: 12 page

    Enhancement of electron spin coherence by optical preparation of nuclear spins

    Full text link
    We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. When a pair of applied laser fields satisfy two-photon resonance between the two ground electronic spin states, detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. If the spin were driven into a coherent population trapping state where no light scattering takes place, then the nuclear state would be projected into an eigenstate of the Overhauser field operator and electron decoherence due to nuclear spins would be suppressed: we show that this limit can be approached by adapting the laser frequencies when a photon is detected. We use a Lindblad equation to describe the time evolution of the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 ns to 500 ns after a preparation time of 10 microseconds.Comment: 5 pages, 4 figure

    Gaussian Entanglement of Formation

    Full text link
    We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.Comment: 8 pages (references updated, typos corrected

    Quantum state engineering, purification, and number resolved photon detection with high finesse optical cavities

    Full text link
    We propose and analyze a multi-functional setup consisting of high finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows of quantum non demolition number resolved photodetection in the optical domain.Comment: 14 pages, 10 figure

    Entanglement of formation for symmetric Gaussian states

    Full text link
    We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize Einstein-Podolsky-Rosen-like correlations. We use this fact to determine the entanglement of formation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which this measure has been determined for genuine continuous variable systems.Comment: 4 pages, revtex

    Quantum Description of Nuclear Spin Cooling in a Quantum Dot

    Full text link
    We study theoretically the cooling of an ensemble of nuclear spins coupled to the spin of a localized electron in a quantum dot. We obtain a master equation for the state of the nuclear spins interacting with a sequence of polarized electrons that allows us to study quantitatively the cooling process including the effect of nuclear spin coherences, which can lead to ``dark states'' of the nuclear system in which further cooling is inhibited. We show that the inhomogeneous Knight field mitigates this effect strongly and that the remaining dark state limitations can be overcome by very few shifts of the electron wave function, allowing for cooling far beyond the dark state limit. Numerical integration of the master equation indicates, that polarizations larger than 90% can be achieved within a millisecond timescale.Comment: published version; 9 pages, 4 figure
    • …
    corecore