10,141 research outputs found

    Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors

    Get PDF
    A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented

    Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Get PDF
    We show that under variation of moduli fields ϕ\phi the first law of black hole thermodynamics becomes dM=κdA8π+ΩdJ+ψdq+χdpΣdϕdM = {\kappa dA\over 8\pi} + \Omega dJ + \psi dq + \chi dp - \Sigma d\phi, where Σ\Sigma are the scalar charges. We also show that the ADM mass is extremized at fixed AA, JJ, (p,q)(p,q) when the moduli fields take the fixed value ϕfix(p,q)\phi_{\rm fix}(p,q) which depend only on electric and magnetic charges. It follows that the least mass of any black hole with fixed conserved electric and magnetic charges is given by the mass of the double-extreme black hole with these charges. Our work allows us to interpret the previously established result that for all extreme black holes the moduli fields at the horizon take a value ϕ=ϕfix(p,q)\phi= \phi_{\rm fix}(p,q) depending only on the electric and magnetic conserved charges: ϕfix(p,q) \phi_{\rm fix}(p,q) is such that the scalar charges Σ(ϕfix,(p,q))=0\Sigma ( \phi_{\rm fix}, (p,q))=0.Comment: 3 pages, no figures, more detailed versio

    Convex Functions and Spacetime Geometry

    Full text link
    Convexity and convex functions play an important role in theoretical physics. To initiate a study of the possible uses of convex functions in General Relativity, we discuss the consequences of a spacetime (M,gμν)(M,g_{\mu \nu}) or an initial data set (Σ,hij,Kij)(\Sigma, h_{ij}, K_{ij}) admitting a suitably defined convex function. We show how the existence of a convex function on a spacetime places restrictions on the properties of the spacetime geometry.Comment: 26 pages, latex, 7 figures, improved version. some claims removed, references adde

    Multi-black hole solutions in five dimensions

    Full text link
    Using a recently developed generalized Weyl formalism, we construct an asymptotically flat, static vacuum Einstein solution that describes a superposition of multiple five-dimensional Schwarzschild black holes. The spacetime exhibits a U(1)\times U(1) rotational symmetry. It is argued that for certain choices of parameters, the black holes are collinear and so may be regarded as a five-dimensional generalization of the Israel-Khan solution. The black holes are kept in equilibrium by membrane-like conical singularities along the two rotational axes; however, they still distort one another by their mutual gravitational attraction. We also generalize this solution to one describing multiple charged black holes, with fixed mass-to-charge ratio, in Einstein-Maxwell-dilaton theory.Comment: 23 pages, 6 figure

    Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy Sim(n-2)

    Full text link
    The classifications of holonomy groups in Lorentzian and in Euclidean signature are quite different. A group of interest in Lorentzian signature in n dimensions is the maximal proper subgroup of the Lorentz group, SIM(n-2). Ricci-flat metrics with SIM(2) holonomy were constructed by Kerr and Goldberg, and a single four-dimensional example with a non-zero cosmological constant was exhibited by Ghanam and Thompson. Here we reduce the problem of finding the general nn-dimensional Einstein metric of SIM(n-2) holonomy, with and without a cosmological constant, to solving a set linear generalised Laplace and Poisson equations on an (n-2)-dimensional Einstein base manifold. Explicit examples may be constructed in terms of generalised harmonic functions. A dimensional reduction of these multi-centre solutions gives new time-dependent Kaluza-Klein black holes and monopoles, including time-dependent black holes in a cosmological background whose spatial sections have non-vanishing curvature.Comment: Typos corrected; 29 page

    Nucleating Black Holes via Non-Orientable Instantons

    Get PDF
    We extend the analysis of black hole pair creation to include non- orientable instantons. We classify these instantons in terms of their fundamental symmetries and orientations. Many of these instantons admit the pin structure which corresponds to the fermions actually observed in nature, and so the natural objection that these manifolds do not admit spin structure may not be relevant. Furthermore, we analyse the thermodynamical properties of non-orientable black holes and find that in the non-extreme case, there are interesting modifications of the usual formulae for temperature and entropy.Comment: 27 pages LaTeX, minor typos are correcte

    Analytical results for string propagation near a Kaluza-Klein black hole

    Full text link
    This brief report presents analytical solutions to the equations of motion of a null string. The background spacetime is a magnetically charged Kaluza-Klein black hole. The string coordinates are expanded with the world-sheet velocity of light as an expansion parameter. It is shown that the zeroth order solutions can be expressed in terms of elementary functions in an appropriate large distance approximation. In addition, a class of exact solutions corresponding to the Pollard-Gross-Perry-Sorkin monopole case is also obtained.Comment: Revtex, 9 pages including two postscript figures, More detailed discussion and new references adde

    Rotating Black Holes in Higher Dimensions with a Cosmological Constant

    Get PDF
    We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated S^{D-2} bundles over S^2, infinitely many for each odd D\ge 5. Applications to string theory and M-theory are indicated.Comment: 8 pages, Latex. Short version, with more compact notation, of hep-th/0404008. To appear in Phys. Rev. Let

    String dynamics near a Kaluza-Klein black hole

    Get PDF
    The dynamics of a string near a Kaluza-Klein black hole are studied. Solutions to the classical string equations of motion are obtained using the world sheet velocity of light as an expansion parameter. The electrically and magnetically charged cases are considered separately. Solutions for string coordinates are obtained in terms of the world-sheet coordinate τ\tau. It is shown that the Kaluza-Klein radius increases/decreases with τ\tau for electrically/magnetically charged black hole.Comment: Latex2e file with six postscript figures. Minor changes, more accurate numerical results and updated reference

    Newton-Hooke spacetimes, Hpp-waves and the cosmological constant

    Full text link
    We show explicitly how the Newton-Hooke groups act as symmetries of the equations of motion of non-relativistic cosmological models with a cosmological constant. We give the action on the associated non-relativistic spacetimes and show how these may be obtained from a null reduction of 5-dimensional homogeneous pp-wave Lorentzian spacetimes. This allows us to realize the Newton-Hooke groups and their Bargmann type central extensions as subgroups of the isometry groups of the pp-wave spacetimes. The extended Schrodinger type conformal group is identified and its action on the equations of motion given. The non-relativistic conformal symmetries also have applications to time-dependent harmonic oscillators. Finally we comment on a possible application to Gao's generalization of the matrix model.Comment: 21 page
    corecore