46 research outputs found

    First Molecular Epidemiological Study of Cutaneous Leishmaniasis in Libya

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by protozoan parasites of the genus Leishmania. The disease is characterized by the formation of chronic skin lesions followed by permanent scars and deformation of the infected area. It is distributed in many tropical and subtropical countries with more than 2 million cases every year. During the past few years CL has emerged as a major public health problem in Libya. So far, diagnosis was based on clinical symptoms and microscopic observation of parasites. Disease outbreaks were not investigated and the causative leishmanial species of CL were not identified so far. Our study indicates the presence of two coexisting species: Leishmania major and Leishmania tropica. These results are crucial in order to provide accurate treatment, precise prognosis and appropriate public health control measures. The recent armed conflict in Libya that ended with the Gadhafi regime collapse on October 2011 has affected all aspects of the life in the country. In this study we discussed multiple risk factors that could be associated with this conflict and present major challenges that should be considered by local and national health authorities for evaluating the CL burden and highlighting priority actions for disease control

    Etude hydrodynamique de l'expansion d'un plasma avec formation d'anévrisme créé lors de l'interaction entre un faisceau laser et un échantillon de graphite

    No full text
    Des expériences de visualisations de jets de plasmas créés par laser à CO2 impulsionnel sur matériaux solides ont été réalisées afin d'étudier le comportement hydrodynamique de ces plasmas créés en atmosphère variable (de 102 Pa à 105 Pa). On s'intéressera plus particulièrement dans cette présentation aux plasmas de carbone se propageant dans de l'air synthétique à faible pression. Pour des conditions bien particulières de densité d'énergie et de pression ambiante, le caractère instable d'une onde de souffle a été mis en évidence. Cette instabilité hydrodynamique se caractérise par la formation d'un second front (anévrisme) prenant naissance dans la partie frontale de l'onde de souffle exposée au rayonnement laser

    Nano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress response

    No full text
    Currently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2\u3b2, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and upregulated mRNA copy number of OC gene. The expression of this gene was strongly correlated with mineralization degree, thus confirming its potency as a good marker of bone mineralization in gilthead seabream larvae

    Organic, inorganic, and nanoparticles of Se, Zn, and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758).

    No full text
    Levels of the oxidative stress-related minerals selenium (Se), zinc (Zn) and manganese (Mn) that should be supplied in microdiets for marine fish larvae depend on the availability of the molecular form of these minerals. The objective of this study was to determine how effectively Se, Zn and Mn in organic, inorganic and nanoparticle forms promote larval performance and bone development. Microdiets supplemented with Se, Zn and Mn were fed for 24 days to 20 dah seabream larvae. Microdiets without Se, Zn and Mn supplementation were associated with poor growth, low bone mineralization and a high incidence of anomalies in the branchial arches. Including Zn, Mn and Se in an amino acid chelate organic form promoted maximum larval growth, increased body lipid reserves, enhanced early mineralization and prevented branchial arches anomalies. In contrast, feeding with inorganic forms of these minerals was less effective than organic minerals in improving larval weight or bone mineralization in comparison to the non-supplemented diet. Moreover, the larvae were less resistant to stress, and fish showed higher bone anomalies in the pre-hemal region. Adding Zn, Mn and Se in the form of nanometals did not enhance growth, but improved stress resistance and bone mineralization. The study showed the need to supplement seabream with early weaning diets based on squid meal and krill oil with one or more of the antioxidant minerals, to promote larval growth, bone mineralization and prevention of skeleton anomalies, organic minerals being more effective than inorganic forms and nanometals in promoting mineralization and stress resistance
    corecore