80 research outputs found

    A1 and A2a receptors mediate inhibitory rffects of adenosine on the motor activity of human colon

    Get PDF
    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways

    Influence of the serotonin transporter 5HTTLPR polymorphism on symptom severity in irritable bowel syndrome

    Get PDF
    5HTTLPR polymorphism of serotonin transporter yields short (S) and long (L) alleles. SS and LS genotypes are associated with reduced expression of serotonin transporter. This cross-sectional study investigated the association of 5HTTLPR with symptom severity of irritable bowel syndrome (IBS). Patients with IBS (Rome III) and healthy controls were included. Genomic DNA was extracted from saliva, and 5HTTLPR alleles were assessed by polymerase chain reaction. IBS symptom severity was evaluated by means of IBS-SSS questionnaire. Two hundreds and four IBS patients (159 females; mean age: 39.6±12.3 years; 106 with constipation: C-IBS; 98 with diarrhea: D-IBS) and 200 healthy controls (154 females; mean age: 40.4±15.8 years) were enrolled. The overall IBS-SSS value was higher in LS/SS than LL patients (319.0±71.5 versus 283.8±62.3; P = 0.0006). LS/SS patients had also higher values of abdominal pain (59.7±21.0 versus 51.0±18.8; P = 0.020) and bowel dissatisfaction (80.1±23.9 versus 70.5±22.8; P = 0.035). The overall IBS-SSS values in C-IBS and D-IBS patients were 317.2±68.3 and 296.1±71.4, respectively (P = 0.192), with significantly higher values for abdominal distension (65.0±24.4 versus 51.4±24.8; P = 0.0006), but not for bowel dissatisfaction (80.5±21.7 versus 72.9±25.7; P = 0.138). Frequencies of 5HTTLPR genotypes did not differ significantly when comparing IBS patients (overall or upon stratification in C-IBS and D-IBS) with healthy controls. In conclusion, the LS and SS genotypes are significantly correlated with IBS symptom severity, although their possible direct causal role remains to be proven. In addition, the present findings do not support an association of 5HTTLPR with IBS or its clinical presentation in terms of bowel habit predominance

    Role of coxibs in the strategies for gastrointestinal protection in patients requiring chronic non-steroidal anti-inflammatory therapy

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed drugs due to their high efficacy in the treatment of pain, fever, inflammation and rheumatic disorders. However, their use is associated with the occurrence of adverse effects at the level of digestive tract, ranging from dyspeptic symptoms, gastrointestinal erosions and peptic ulcers to more serious complications, such as overt bleeding or perforation. To overcome problems related to NSAID-induced digestive toxicity, different therapeutic strategies can presently be considered, including the co-administration of drugs endowed with protective activity on the upper gastrointestinal tract, such as the proton pump inhibitors, or the prescription of coxibs, which have been clinically developed as anti-inflammatory/analgesic drugs characterized by reduced damaging activity on gastrointestinal mucosa. The availability of different treatment options, to reduce the risk of NSAID-induced adverse digestive effects, has fostered intensive preclinical and clinical research aimed at addressing a number of unresolved issues and to establish rational criteria for an appropriate use of coxibs in the medical practice. Particular attention is being paid to the management of patients with high degrees of digestive risk, resulting by concomitant treatment with low-dose aspirin for anti-thrombotic prophylaxis or ongoing symptomatic gastroduodenal ulcers. The present review discusses the most relevant lines of evidence concerning the position of coxibs in the therapeutic strategies for gastrointestinal protection in patients who require NSAID therapy and hold different levels of risk of developing adverse effects at the level of digestive tract

    Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications

    Get PDF
    The wide distribution of ATP and adenosine receptors as well as enzymes for purine metabolism in different gut regions suggests a complex role for these mediators in the regulation of gastrointestinal functions. Studies in rodents have shown a significant involvement of adenosine in the control of intestinal secretion, motility and sensation, via activation of A1, A2A, A2B or A3 purinergic receptors, as well as the participation of ATP in the regulation of enteric functions, through the recruitment of P2X and P2Y receptors. Increasing interest is being focused on the involvement of ATP and adenosine in the pathophysiology of intestinal disorders, with particular regard for inflammatory bowel diseases (IBDs), intestinal ischemia, post-operative ileus and related dysfunctions, such as gut dysmotility, diarrhoea and abdominal discomfort/pain. Current knowledge suggests that adenosine contributes to the modulation of enteric immune and inflammatory responses, leading to anti-inflammatory actions. There is evidence supporting a role of adenosine in the alterations of enteric motor and secretory activity associated with bowel inflammation. In particular, several studies have highlighted the importance of adenosine in diarrhoea, since this nucleoside participates actively in the cross-talk between immune and epithelial cells in the presence of diarrhoeogenic stimuli. In addition, adenosine exerts complex regulatory actions on pain transmission at peripheral and spinal sites. The present review illustrates current information on the role played by adenosine in the regulation of enteric functions, under normal or pathological conditions, and discusses pharmacological interventions on adenosine pathways as novel therapeutic options for the management of gut disorders and related abdominal symptoms

    Synthesis of quaternary α-benzyl- and α-allyl-α-methylamino cyclobutanones

    No full text
    A simple and practical protocol for the construction of synthetically important quaternary α-benzyl- and α-allyl-α-methylamino cyclobutanones in good to high yield, via a sequential one-pot methylation/sigmatropic rearrangement, has been accomplished for the first time. The quaternary α-alkyl-α-amino cyclobutanones could be further manipulated, affording synthetically interesting scaffolds such as highly substituted tryptamines and cyclobuta-fused indolines

    Axial compressor response to inlet flow distortions by a CFD analysis

    No full text
    The usual approach to compressor design considers uniform inlet flow characteristics. Especially in aircraft applications, the inlet flow is quite often non uniform, and this can result in severe performance degradation. The magnitude of this phenomenon is amplified in military engines due to the complexity of inlet duct configurations and the extreme flight conditions. CFD simulation is an innovative and powerful tool for studying inlet distortions and can bring this inside the very early phases of the design process. This project attempts to study the effects of inlet flow distortions in an axial flow compressor trying to minimize the use computer resources and computational time. The first stage of a low bypass ratio compressor has been analyzed and its clean and distorted performance compared outlining the principal changes due to uneven flow distribution: drop in mass flow, increase in pressure and temperature ratios, decrease in surge margin. Three different studies have then been conducted to better understand the effects of the level, the type and the frequency of the distortion

    Correction to: Numerical evaluation of entropy generation in isolated airfoils and Wells turbines (Meccanica, (2018), 53, 14, (3437-3456), 10.1007/s11012-018-0896-1)

    No full text
    In the original publication of the article, Eqs. (26)–(28) are incorrect due to a missing ρ symbol, inadvertently omitted when reporting the equations in the article

    Somatostatin inhibits colon cancer cell growth through cyclooxygenase-2 down-regulation

    Get PDF
    BACKGROUND AND PURPOSE: Cyclooxygenase-2 (COX-2) is expressed in colonic neoplasms, where it supports cell proliferation via prostaglandin E(2) (PGE(2)) production. This study investigated the effects of somatostatin-14 on COX-2 expression, PGE(2) production and proliferation in colon cancer cells. EXPERIMENTAL APPROACH: Human colon adenocarcinoma cell lines Caco-2, HT-29 and HCT116 were used. The following techniques were employed: colourimetric assay for cell growth; 5-bromo-2'-deoxyuridine assay for DNA synthesis; enzyme immunoassay for PGE(2); COX-2 mRNA silencing; RT-PCR or Western blot for somatostatin receptor subtypes, cyclooxygenase isoforms, phosphorylated-ERK-1/ERK-2 and phosphorylated-Akt. KEY RESULTS: HT-29 and Caco-2 cells expressed COX-2 and somatostatin receptors (sst(3/4/5) and sst(3/5), respectively). HCT116 cells did express somatostatin receptors (sst(2/3/5)), but not COX-2. Somatostatin-14 inhibited basal COX-2 expression, PGE(2) production, DNA synthesis and growth in Caco-2 cells and these effects were prevented by BN81658 (sst(3) receptor antagonist). Basal proliferation of HT-29, HCT116 and COX-2-silenced Caco-2 cells was not affected by somatostatin-14. Stimulation of HT-29 cells with gastrin-17 elicited increments of ERK-1/ERK-2 and Akt phosphorylation, COX-2 expression, PGE(2) production, DNA synthesis and cell growth, which were all counteracted by somatostatin-14. Somatostatin-14-induced inhibition of COX-2 expression, PGE(2) production and DNA synthesis were blocked by BIM23056 (sst(5) receptor antagonist). CONCLUSIONS AND IMPLICATIONS: Somatostatin decreases COX-2 expression and function in colon cancer cells via activation of sst(3) or sst(5) receptors, and these effects contribute to the inhibitory action of somatostatin on cell proliferation. These findings can be relevant to the development of therapeutic strategies based on the modulation of the COX-2 pathway

    Discussion on “Performance analysis of Wells turbine blades using the entropy generation minimization method” by Shehata, A. S., Saqr, K. M., Xiao, Q., Shahadeh, M. F. and Day, A.

    No full text
    This paper presents a critical appraisal of the paper “Performance analysis of Wells turbine blades using the entropy generation minimization method” by Shehata, A. S., Saqr, K. M., Xiao, Q., Shahadeh, M. F. and Day, A., published in Renewable Energy, volume 86, pp. 1123–1133. The discussion focuses in particular on five aspects of the work being critiqued: the set-up of the numerical experiment, the similarity of the problem studied with the large existing literature on oscillating airfoils, the estimation of entropy generation through the numerical solution of the Navier-Stokes equations, the equivalence between entropy and drag, and finally a comparison of the results presented with existing literature. From this appraisal, it is concluded that the problem studied is not representative of a Wells turbine and that the article contains a number of fundamental errors that lead to incorrect results. These mistakes would have been evident had the results been analyzed critically and compared to the existing literature on the subject. If the results had been presented in non-dimensional form, as best practice recommends, they would have been more readily comparable to those in existing literature and important discrepancies might not have been obscured

    Numerical Evaluation of Entropy Generation in Isolated Airfoils and Wells Turbines

    No full text
    In recent years, a number of authors have studied entropy generation in Wells turbines. This is potentially a very interesting topic, as it can provide important insights into the irreversibilities of the system, as well as a methodology for identifying, and possibly minimizing, the main sources of loss. Unfortunately, the approach used in these studies contains some crude simplifications that lead to a severe underestimation of entropy generation and, more importantly, to misleading conclusions. This paper contains a re-examination of the mechanisms for entropy generation in fluid flow, with a particular emphasis on RANS equations. An appropriate methodology for estimating entropy generation in isolated airfoils and Wells turbines is presented. Results are verified for different flow conditions, and a comparison with theoretical values is presented
    • 

    corecore