653 research outputs found

    Dynamical Reduction Models with General Gaussian Noises

    Get PDF
    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence.Comment: 22 pages, Late

    Does quantum nonlocality irremediably conflict with Special Relativity?

    Full text link
    We reconsider the problem of the compatibility of quantum nonlocality and the requests for a relativistically invariant theoretical scheme. We begin by discussing a recent important paper by T. Norsen [arXiv:0808.2178] on this problem and we enlarge our considerations to give a general picture of the conceptually relevant issue to which this paper is devoted.Comment: 18 pages, 1 figur

    Quantum and Superquantum Nonlocal Correlations

    Full text link
    We present a simple hidden variable model for the singlet state of a pair of qubits, characterized by two kinds, hierarchically ordered, of hidden variables. We prove that, averaging over both types of variables, one reproduces all the quantum mechanical correlations of the singlet state. On the other hand, averaging only over the hidden variables of the lower level, one obtains a general formal theoretical scheme exhibiting correlations stronger than the quantum ones, but with faster-than-light communication forbidden. This result is interesting by itself since it shows that a violation of the quantum bound for nonlocal correlations can be implemented in a precise physical manner and not only mathematically, and it suggests that resorting to two levels of nonlocal hidden variables might led to a deeper understanding of the physical principles at the basis of quantum nonlocality.Comment: 5 pages, 1 figure. Submitted for publicatio

    Selective cloning of Gaussian states by linear optics

    Full text link
    We investigate the performances of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows to clone at will one of the two incoming input states. This machine is a complete generalization of a 1 to 2 cloning scheme demonstrated by U. L. Andersen et al. [Phys. Rev. Lett. vol. 94, 240503 (2005)]. The input-output fidelity is studied for generic Gaussian input state and the effect of non-unit quantum efficiency is also taken into account. We show that if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machne is also discussed.Comment: 6 pages, 6 figure

    The Conway-Kochen argument and relativistic GRW models

    Get PDF
    In a recent paper, Conway and Kochen proposed what is now known as the "Free Will theorem" which, among other things, should prove the impossibility of combining GRW models with special relativity, i.e., of formulating relativistically invariant models of spontaneous wavefunction collapse. Since their argument basically amounts to a non-locality proof for any theory aiming at reproducing quantum correlations, and since it was clear since very a long time that any relativistic collapse model must be non-local in some way, we discuss why the theorem of Conway and Kochen does not affect the program of formulating relativistic GRW models.Comment: 16 pages, RevTe

    A general hidden variable model for the two-qubits system

    Full text link
    We generalize Bell's hidden variable model describing the singlet state of a two-qubits system by extending it to arbitrary states and observables. As in the original work, we assume a uniform, state-independent probability distribution for the hidden variables which are identified with the unit vectors of a 3-dimensional real space. By slightly modifying our model, we provide also a minimal hidden variable description of the two-qubits system, relying on a single hidden variable. We discuss the main features and the implications of the model.Comment: 4 pages, submitted for publicatio

    Hardy's proof of nonlocality in the presence of noise

    Full text link
    We extend the validity of Hardy's nonlocality without inequalities proof to cover the case of special one-parameter classes of non-pure statistical operators. These mixed states are obtained by mixing the Hardy states with a completely chaotic noise or with a colored noise and they represent a realistic description of imperfect preparation processes of (pure) Hardy states in nonlocality experiments. Within such a framework we are able to exhibit a precise range of values of the parameter measuring the noise affecting the non-optimal preparation of an arbitrary Hardy state, for which it is still possible to put into evidence genuine nonlocal effects. Equivalently, our work exhibits particular classes of bipartite mixed states whose constituents do not admit any local and deterministic hidden variable model reproducing the quantum mechanical predictions.Comment: 9 pages, 2 figures, RevTex, revised versio

    Greenberger-Horne-Zeilinger argument of nonlocality without inequalities for mixed states

    Full text link
    We generalize the Greenberger-Horne-Zeilinger nonlocality without inequalities argument to cover the case of arbitrary mixed statistical operators associated to three-qubits quantum systems. More precisely, we determine the radius of a ball (in the trace distance topology) surrounding the pure GHZ state and containing arbitrary mixed statistical operators which cannot be described by any local and realistic hidden variable model and which are, as a consequence, noncompletely separable. As a practical application, we focus on certain one-parameter classes of mixed states which are commonly considered in the experimental realization of the original GHZ argument and which result from imperfect preparations of the pure GHZ state. In these cases we determine for which values of the parameter controlling the noise a nonlocality argument can still be exhibited, despite the mixedness of the considered states. Moreover, the effect of the imperfect nature of measurement processes is discussed.Comment: 8 pages, RevTex; added references, corrected typo

    The Hilbert space operator formalism within dynamical reduction models

    Full text link
    Unlike standard quantum mechanics, dynamical reduction models assign no particular a priori status to `measurement processes', `apparata', and `observables', nor self-adjoint operators and positive operator valued measures enter the postulates defining these models. In this paper, we show why and how the Hilbert-space operator formalism, which standard quantum mechanics postulates, can be derived from the fundamental evolution equation of dynamical reduction models. Far from having any special ontological meaning, we show that within the dynamical reduction context the operator formalism is just a compact and convenient way to express the statistical properties of the outcomes of experiments.Comment: 25 pages, RevTeX. Changes made and two figures adde

    Selective modulation of chemical and electrical synapses of Helix neuronal networks during in vitro development

    Get PDF
    BACKGROUND: A large number of invertebrate models, including the snail Helix, emerged as particularly suitable tools for investigating the formation of synapses and the specificity of neuronal connectivity. Helix neurons can be individually identified and isolated in cell culture, showing well-conserved size, position, biophysical properties, synaptic connections, and physiological functions. Although we previously showed the potential usefulness of Helix polysynaptic circuits, a full characterization of synaptic connectivity and its dynamics during network development has not been performed. RESULTS: In this paper, we systematically investigated the in vitro formation of polysynaptic circuits, among Helix B2 and the serotonergic C1 neurons, from a morphological and functional point of view. Since these cells are generally silent in culture, networks were chemically stimulated with either high extracellular potassium concentrations or, alternatively, serotonin. Potassium induced a transient depolarization of all neurons. On the other hand, we found prolonged firing activity, selectively maintained following the first serotonin application. Statistical analysis revealed no significant changes in neuronal dynamics during network development. Moreover, we demonstrated that the cell-selective effect of serotonin was also responsible for short-lasting alterations in C1 excitability, without long-term rebounds. Estimation of the functional connections by means of cross-correlation analysis revealed that networks under elevated KCl concentrations exhibited strongly correlated signals with short latencies (about 5 ms), typical of electrically coupled cells. Conversely, neurons treated with serotonin were weakly connected with longer latencies (exceeding 20 ms) between the interacting neurons. Finally, we clearly demonstrated that these two types of correlations (in terms of strength/latency) were effectively related to the presence of electrical or chemical connections, by comparing Micro-Electrode Array (MEA) signal traces with intracellularly recorded cell pairs. CONCLUSIONS: Networks treated with either potassium or serotonin were predominantly interconnected through electrical or chemical connections, respectively. Furthermore, B2 response and short-term increase in C1 excitability induced by serotonin is sufficient to trigger spontaneous activity with chemical connections, an important requisite for long-term maintenance of firing activity
    corecore