612 research outputs found
Laser ignition of iso-octane and n-heptane jets under compression-ignition conditions
This work aims to investigate the effect of laser-induced plasma ignition (LI) on combustion behaviours of iso-octane (a gasoline surrogate) at compression-ignition (CI) conditions. A high-energy laser was used to force the fuel ignition at a quiescent-steady environment inside an optically accessible constant-volume combustion chamber with 900K ambient gas temperature, 22.8kg/m3 ambient gas density and 21 vol.% O2 concentration. A diesel surrogate (n-heptane) was tested at a lower charge temperature of 735K to offset its higher fuel reactivity than the iso-octane, such that the flames of both fuels can have a similar lift-off length. Forced laser ignition was introduced either before or after the natural autoignition timing of the fuels. The laser was focused at the jet axis 15mm and 30mm from the nozzle. High-speed schlieren imaging, heat release analysis and flame luminosity measurement were applied to the flames. The high-speed schlieren imaging was used to monitor the flame structure evolution of the natural ignition and LI cases. Due to laser ignition, the flame lift-off lengths decrease, with which the uncertainties in the lift-off distances reduce by more than 80%. The laser-affected flame bases return back to the natural flame base locations. The uncertainties in the lift-off lengths also increase, as the flame stabilisation locations approach the natural lift-off distances. Under the test conditions of this work, the rates at which the iso-octane flames shift downstream are slower than the n-heptane cases. The heat release rate profiles show high heat release from the flames following the LI events, before transitioning to lower steady values. The flame luminosity measurements indicate a strong correlation between the LI affected lift-off length and increased soot formation. The luminosity levels decrease as the flame base shifts downstream over time
Enzymatic processing of protein-based fibers
Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.This work was financially supported by the National Natural Science Foundation of China (21274055,51373071, 31201134 and 31470509), the Program for New Century Excellent Talents in University (NCET-12-0883), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), the Jiangsu Provincial Natural Science Foundation of China (BK2012112), and the Fundamental Research Funds for the Central Universities (JUSRP51312B)
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay
published_or_final_versio
Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
published_or_final_versio
Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment
published_or_final_versio
- …
