2,404 research outputs found

    Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays

    Get PDF
    The SnS nanowire arrays have been successfully synthesized by the template-assisted pulsed electrochemical deposition in the porous anodized aluminum oxide template. The investigation results showed that the as-synthesized nanowires are single crystalline structures and they have a highly preferential orientation. The ordered SnS nanowire arrays are uniform with a diameter of 50 nm and a length up to several tens of micrometers. The synthesized SnS nanowires exhibit strong absorption in visible and near-infrared spectral region and the direct energy gapEgof SnS nanowires is 1.59 eV

    Numerical Solution of the Time Dependent 3D Schrödinger Equation Describing Tunneling of Atoms from Anharmonic Traps

    Get PDF
    We present an efficient numerical method for the integration of the 3D Schrödinger equation. A tunneling problem of two interacting bosonic atoms confined in a 1D anharmonic trap has been successfully solved by means of this method. We demonstrate fast convergence of the final results with respect to spatial and temporal grid steps. The computational scheme is based on the operator-splitting technique with the implicit Crank-Nicolson algorithm on spatial sixth-order finite-differences. The computational time is proportional to the number of spatial grid points

    High Frequency Characteristics of Fe65Co35 Alloy Cluster-Assembled Films Prepared By Energetic Cluster Deposition

    Get PDF
    Size-monodispersed Fe(65)Co(35) alloy clusters whose average sizes ranged between 7 and 12 nm were obtained using a plasma-gas-condensation (PGC)-type cluster deposition apparatus. Positively charged clusters in a cluster beam were accelerated electrically and deposited onto a negatively biased substrate together with neutral clusters from the same cluster source, leading to formation of a high-density Fe(65)Co(35) alloy cluster-assembled films with soft magnetic properties. High frequency magnetic characteristics were studied for these films prepared at room temperature by an energetic cluster deposition with and without O(2) gas addition into a cluster deposition chamber

    Network modeling of the transcriptional effects of copy number aberrations in glioblastoma

    Get PDF
    DNA copy number aberrations (CNAs) are a characteristic feature of cancer genomes. In this work, Rebecka Jörnsten, Sven Nelander and colleagues combine network modeling and experimental methods to analyze the systems-level effects of CNAs in glioblastoma

    Implementation and first-year screening results of an ocular telehealth system for diabetic retinopathy in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To describe implementation and first-year screening results of the first Chinese telehealth system for diabetic retinopathy (DR) - the Beixinjing Community Diabetic Retinopathy Telehealth system (BCDRT).</p> <p>Methods</p> <p>BCDRT implementation was based on the acquisition of adequate digital retinographs, secure digital transmission, storage and retrieval of participants' data and reader-generated medical reports. Local diabetic residents meeting inclusion criteria were enrolled into the BCDRT system beginning in 2009. Participants recommended for further in-person examination with ophthalmologists were followed, and the consistencies in diagnoses between BCDRT and ophthalmologists for DR or macular edema were calculated.</p> <p>Results</p> <p>A total of 471 diabetic residents participated in BCDRT screening in 2009. The proportions of total DR, proliferative DR, and diabetic macular edema were 24.42% (115 patients), 2.12% (10 patients) and 6.47% (24 patients), respectively: 56 patients consulted ophthalmologists for further in-person retinal examination with funduscopy after pupil dilation. High rates of consistency between BCDRT screening and ophthalmologists were observed for macular edema (Kappa = 0.81), moderate or severe non-proliferative DR grade (Kappa = 0.92), and other DR grades (Kappa = 1). A total of 456 (96.82%) patients were willing to participate in the next BCDRT screening.</p> <p>Conclusions</p> <p>BCDRT was a reliable and valid system for DR screening, and offers the potential to increase DR annual screening rates in local residents.</p

    Dry Bacterial Cellulose and Carboxymethyl Cellulose formulations with interfacial-active performance: processing conditions and redispersion

    Get PDF
    Dry or powdered formulations of food additives facilitate transportation, storage, preservation and handling. In this work, dry formulations of bacterial cellulose and carboxymethyl cellulose (BC:CMC), easily redispersible and preserving the functionality of the never-dried dispersions are reported. Different processing parameters and their effect on the materials properties were evaluated, namely: (i) wet-grinding of BC (Hand-blender, Microcut Head Impeller, High-pressure Homogenizer), (ii) drying of BC:CMC mixtures (fast drying at130 °C and slow drying at 80 °C) and subsequent (iii) comminution to different particle sizes. The dispersibility of the obtained BC:CMC powders was evaluated, and their functionality after redispersion was assessed by measuring the dynamic viscosity, the effect in oil/water interfacial tension (liquidliquid system) and the stabilization of cocoa in milk (solidliquid system). The size of BC fibre bundles was of paramount relevance to its stabilizing ability in multiphasic systems. A more extensive wet-grinding of the BC fibres was accompanied by a loss in the BC:CMC functionality, related to the increasingly smaller size of the BC bundles. Indeed, as the Dv (50) of the wet BC bundles was reduced from 1228 to 55 µm, the BC:CMC viscosity profile dropped and the effect on interfacial tension decreased. This effect was observed both on the never-dried and dry BC:CMC formulations. On the other hand, the drying method did not play a major effect in the materials properties. In a benchmarking study, the BC:CMC formulations, at a low concentration (0.15%), had better stabilizing ability of the cocoa particles than several commercial cellulose products.Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10570-020-03211-9) contains supplementary material, which is available to authorized users.This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte. Daniela Martins also gratefully acknowledges FCT for the PhD scholarship, reference SFRH/BD/115917/2016.info:eu-repo/semantics/publishedVersio

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina

    Get PDF
    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function
    corecore