14 research outputs found

    The dating of shallow faults in the Earth's crust

    Full text link
    Direct dating of ductile shear zones and calculation of uplift/exhumation rates can be done using various radiometric dating techniques. But radiometric dating of shallow crustal faulting, which occurs in the crust's brittle regime, has remained difficult(1-4) because the low temperatures typical of shallow crusted faults prevent the complete syntectonic mineral recrystallization that occurs in deeper faults. Both old (detrital) and newly grown (authigenic) fine-grained phyllosilicates are thus preserved in shallow fault zones and therefore their radiometric ages reflect a mixture of both mineral populations. Also, the loss of Ar-39 during neutron irradiation in dating of clay minerals can produce erroneously old ages. Here we present a method of characterizing the clay populations in fault gouge, using X-ray modelling, combined with sample encapsulation, and show how it can be used to date near-surface fault activity reliably. We examine fault gouge from the Lewis thrust of the southern Canadian Rockies, which we determine to be similar to 52 Myr old. This result requires the western North America stress regime to have changed from contraction to extension in only a few million years during the Eocene. We also estimate the uplift/exhumation age and sedimentary source of these rocks to be similar to 172 Myr.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62567/1/412172a0.pd

    Model of structure disorder of illite: preliminary results

    No full text
    This paper presents preliminary results of the structure model of a pure illite sample from Hungary. The clay sample mined in the Tokaj region (Northern Hungary) is composed of predominating illite and minor smectite and quartz. Enrichment by sedimentation in water solvent of the illite fraction led to a nearly pure sample which was fully characterized using conventional microscopic and chemical analyses. Although, illite is a well known clay mineral used for many industrial applications (its crystallinity index is used to establish the degree of illitization in oil source rocks linked to oil generation) a structure model has never been refined to date. This is due to the fact that pure samples to be used for structure characterization are a rarity in nature and because the structure is affected by extensive planar disorder. Thus, the structural characterization of this sample is of great importance for the understanding of the structure of illite in general. The planar disorder prevents a simple structure refinement using the Rietveld method and different algorithms must be used. Here, we present the results of structure simulations of powder patterns using NEWMOD, WILDFIRE and DIFFaX, which reveal the structure features and structure model of disorder. They are a good starting point for the combined structure/microstructure refinement which will be attempted using DIFFaX(+)

    Effects of hydrogen on the formation of aligned carbon nanotubes by chemical vapor deposition.

    No full text
    Well-aligned carbon nanotubes with controllable properties were grown on porous silicon substrates by thermal chemical vapor deposition. The morphologies of the carbon nanotubes were varied with the introduction of H2 during the catalyst activation and/or carbon nanotube growth processes. It was found that H2 promotes the growth of carbon nanotubes while preventing the formation of spherical amorphous carbon particles. Without the introduction of H2 during the C2H2 thermal decomposition, aligned carbon nanotubes mixed with spherical carbon particles were formed on the substrate. However, with the introduction of H2, pure carbon nanotubes were synthesized. These nanotubes also had uniform diameters of 10-20 nm, which is much smaller than nanotubes synthesized without H2. The average growth rate of nanotubes was also affected by the introduction of hydrogen into the reaction chamber during nanotube growth. With the addition of hydrogen, the average growth rate changed from 78 nm/s to 145 nm/s. A possible growth mechanism, including the effect of a high ratio of H2 to C2H2, is suggested for the growth of these well-aligned carbon nanotubes with uniform diameters

    Diagenetic and very low-grade metamorphic characteristics of the Paleozoic series of the Istanbul Terrane (NW Turkey)

    No full text
    The Istanbul Terrane along the Black Sea coast in NW Anatolia, is a Gondwana-derived continental microplate, comprising a well-developed Paleozoic succession. Petrographic and X-ray diffraction studies were performed on rock samples from measured sections throughout Ordovician-Carboniferous sedimentary units. Diagenetic-very low-grade metamorphic clastic (shale/mudstone, siltstone, sandstone) and calcareous rocks (limestone, dolomite) mainly contain phyllosilicates, quartz, feldspar, calcite, dolomite, hematite and goethite minerals. Phyllosilicates are primarily represented by illite, chlorite, mixed-layered chlorite-vermiculite (C-V), chlorite-smectite (C-S) and illite-chlorite (I-C). Feldspar is commonly present in the Ordovician and Carboniferous units, whereas calcite and dolomite are abundant in the Silurian and Devonian sediments. The most important phyllosilicate assemblage is illite + chlorite + I-C + C-V + C-S. Illite and chlorite-bearing mixed layer clays are found in all units. The amounts of illites increase in the upper parts of the Silurian series and the lower parts of the Devonian series, whereas chlorite and chlorite-bearing mixed-layers are dominant in the Ordovician and Carboniferous units. Kubler index values of illites reflect high-grade anchimetamorphism for the Early Ordovician rocks, low-grade metamorphism to high-grade diagenesis for the Middle Ordovician-Early Silurian rocks and high-grade diagenesis for the Late Silurian-Devonian units. The K-white micas b cell dimensions indicate intermediate pressure conditions in the Early Ordovician-Early Silurian units, but lower pressure conditions in the Middle Silurian-Devonian units. Illites are composed of 2M(1) +/- 1M(d) polytypes in all units, except for Upper Ordovician-Lower Silurian units which involve 1M polytype in addition to 2M(1) and 1M(d) polytypes. The 2M(1)/(2M(1) + 1M(d)) ratios rise from Devonian to Ordovician together with the increasing diagenetic-metamorphic grade. Chlorites have IIb polytype. In general, crystal-chemical data of clay minerals in the Istanbul Terrane show a gradual increase in the diagenetic/metamorphic grade together with increasing depth. The new data presented in this work indicate that the diagenetic/metamorphic grade of the Paleozoic of the Istanbul Terrane is higher than that of the neighboring Zonguldak Terrane and generated by a single metamorphic phase developed at the end of Carboniferous. This finding contrasts with the metamorphic history of the neighboring Zonguldak Terrane that displays a distinct Early Devonian unconformity and a thermal event

    Variation of illite/muscovite Ar-40/Ar-39 age spectra during progressive low-grade metamorphism: an example from the US Cordillera

    No full text
    Ar/ Ar step-heating data were collected from micron to submicron grain-sizes of correlative illite- and muscovite-rich Cambrian pelitic rocks from the western United States that range in metamorphic grade from the shallow diagenetic zone (zeolite facies) to the epizone (greenschist facies). With increasing metamorphic grade, maximum ages from Ar/ Ar release spectra decrease, as do total gas ages and retention ages. Previous studies have explained similar results as arising dominantly or entirely from the dissolution of detrital muscovite and precipitation/recrystallization of neo-formed illite. While recognizing the importance of these processes in evaluating our results, we suggest that the inverse correlation between apparent age and metamorphic grade is controlled, primarily, by thermally activated volume diffusion, analogous to the decrease in apparent ages with depth observed for many thermochronometers in borehole experiments. Our results suggest that complete resetting of the illite/muscovite Ar thermochronometer occurs between the high anchizone and epizone, or at roughly 300 °C. This empirical result is in agreement with previous calculations based on muscovite diffusion parameters, which indicate that muscovite grains with radii of 0. 05-2 μm should have closure temperatures between 250 and 350 °C. At high anchizone conditions, we observe a reversal in the age/grain-size relationship (the finest grain-size produces the oldest apparent age), which may mark the stage in prograde subgreenschist facies metamorphism of pelitic rocks at which neo-formed illite/muscovite crystallites typically surpass the size of detrital muscovite grains. It is also approximately the stage at which neo-formed illite/muscovite crystallites develop sufficient Ar retentivity to produce geologically meaningful Ar/ Ar ages. Results from our sampling transect of Cambrian strata establish a framework for interpreting illite/muscovite Ar/ Ar age spectra at different stages of low-grade metamorphism and also illuminate the transformation of illite to muscovite. At Frenchman Mtn., NV, where the Cambrian Bright Angel Formation is at zeolite facies conditions, illite/muscovite Ar/ Ar data suggest a detrital muscovite component with an apparent age ≥967 Ma. The correlative Carrara Fm. is at anchizone conditions in the Panamint and Resting Spring Ranges of eastern California, and in these locations, illite/muscovite Ar/ Ar data suggest an early Permian episode of subgreenschist facies metamorphism. The same type of data from equivalent strata at epizone conditions (greenschist facies) in the footwall of the Bullfrog/Fluorspar Canyon detachment in southern Nevada reveals a period of slow-to-moderate Late Cretaceous cooling
    corecore