22 research outputs found

    De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Jatropha curcas </it>L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of <it>J. curcas</it>.</p> <p>Results</p> <p>From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. <it>De novo </it>contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis.</p> <p>Conclusion</p> <p>The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition.</p

    Novel receptor-like kinases in cacao contain PR-1 extracellular domains

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacaoL.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand.146602609Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [2009/51018-1, 2009/50119-9, 2012/07657-2

    Global gene expression reveals a set of new genes involved in the modification of cells during erythroid differentiation

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Objectives: Erythroid differentiation is a dynamic process in which a pluripotent stem cell undergoes a series of developmental changes that commit it to a specific lineage. These alterations involve changes in gene expression profiles. In this study, gene expression profiles during differentiation of human erythroid cells of a normal blood donor were evaluated using SAGE. Materials and methods: Global gene expression was evaluated in cells collected immediately before addition of erythropoietin (0 h) and 192 and 336 h after addition of this hormone. Real-time PCR was used to evaluate activation of differentially expressed genes. Results: The data indicate that global aspects of the transcriptome were similar during differentiation of the majority of the genes and that a relatively small set of genes is probably involved in modification of erythroid cells during differentiation. We have identified 93 differentially expressed genes during erythroid development, and expression of some of these was confirmed by qPCR. Various genes including EYA3, ERH, HES6, TIMELESS and TRIB3 were found to be homologous to those of Drosophila melanogaster and here are described for the first time during erythroid development. An important and unique carboxypeptidase inhibitor described in mammalians, LXN, was also identified. Conclusions: The results of this study amplify previously published data and may contribute to comprehension of erythroid differentiation and identification of new target genes involved in some erythroid concerning diseases.433297309Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [02/13801-7]FAPESP [05/51222-7

    A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)One of the defining features of the fermentation process used in the production of bioethanol from sugarcane feedstock is the dynamic nature of the yeast population. Minisatellite molecular markers are particularly useful for monitoring yeast communities because they produce polymorphic PCR products that typically display wide size variations. We compared the coding sequences derived from the genomeof the sugarcane bioethanol strain JAY270/PE-2 to those of the reference Saccharomyces cerevisiae laboratory strain S288c, and searched for genes containing insertion or deletion polymorphisms larger than 24 bp. We then designed oligonucleotide primers flanking nine of these sites, and used them to amplify differentially sized PCR products. We analyzed the banding patterns in the most widely adopted sugarcane bioethanol strains and in several indigenous yeast contaminants, and found that our marker set had very good discriminatory power. Subsequently, these markers were used to successfully monitor they east cell populations in six sugarcane bioethanol distilleries. Additionally, we showed that most of the markers described here are also polymorphic among strains unrelated to bioethanol production, suggesting that they may be applied universally in S. cerevisiae. Because the relatively large polymorphisms are detectable in conventional agarose gels, our method is well suited to modestly equipped on-site laboratories at bioethanol distilleries, therefore providing both cost and time savings. (C) 2013 Elsevier B.V. All rights reserved.1684701709Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Colorado State University Clean Energy SuperclusterFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Gene expression profiles of erythroid precursors characterise several mechanisms of the action of hydroxycarbamide in sickle cell anaemia

    No full text
    Hydroxycarbamide (HC) (or hydroxyurea) has been reported to increase fetal haemoglobin levels and improve clinical symptoms in sickle cell anaemia (SCA) patients. However, the complete pathway by which HC acts remains unclear. To study the mechanisms involved in the action of HC, global gene expression profiles were obtained from the bone marrow cells of a SCA patient before and after HC treatment using serial analysis of gene expression. In the comparison of both profiles, 147 differentially expressed transcripts were identified. The functional classification of these transcripts revealed a group of gene categories associated with transcriptional and translational regulation, e.g. EGR-1, CENTB1, ARHGAP4 and RIN3, suggesting a possible role for these pathways in the improvement of clinical symptoms of SCA patients. The genes involved in these mechanisms may represent potential tools for the identification of new targets for SCA therapy.136233334

    Genes Acquired by Horizontal Transfer Are Potentially Involved in the Evolution of Phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, Two of the Major Pathogens of Cacao

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Moniliophthora perniciosa and Moniliophthora roreri are phytopathogenic basidiomycete species that infect cacao causing two important diseases in this crop: "Witches' Broom" and "Frosty Pod Rot", respectively. The ability of species from this genus (Moniliophthora) to cause disease is exceptional in the family Marasmiaceae. Species in closely related genera including, Marasmius, Crinipellis, and Chaetocalathus, are mainly saprotrophs and are not known to cause disease. In this study, the possibility that this phytopathogenic lifestyle has been acquired by horizontal gene transfer (HGT) was investigated. A stringent genome comparison pipeline was used to identify potential genes that have been obtained by Moniliophthora through HGT. This search led to the identification of three genes: a metallo-dependent hydrolase (MDH), a mannitol phosphate dehydrogenase (MPDH), and a family of necrosis-inducing proteins (NEPs). Phylogenetic analysis of these genes suggests that Moniliophthora acquired NEPs from oomycetes, MDH from actinobacteria and MPDH from firmicutes. Based on the known gene functions and on previous studies of M. perniciosa infection and development, a correlation between gene acquisition and the evolution of the phytopathogenic genus Moniliophthora can be postulated.7018597Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Secretaria de Agricultura, Irrigacao e Reforma Agraria do Estado da Bahia (SEAGRI)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Identification and Characterization of a Class III Chitin Synthase Gene of Moniliophthora perniciosa, the Fungus That Causes Witches' Broom Disease of Cacao

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches' broom disease of cacao.474431440Fundacao de Amparo a Pesquisa do Estado da Bahia (FAPESB)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The JAK2 V617F mutation, present in the majority of polycythemia vera (PV) patients, causes constitutive activation of JAK2 and seems to be responsible for the PV phenotype. However, the transcriptional changes triggered by the mutation have not yet been totally characterized. In this study, we performed a large-scale gene expression study using serial analysis of gene expression in bone marrow cells of a newly diagnosed PV patient harboring the JAK2 V617F mutation and in normal bone marrow cells of healthy donors. JUNB was one of the genes upregulated in PV, and we confirmed, by quantitative real-time PCR, an overexpression of JUNB in hematopoietic cells of other JAK2 V617F PV patients. Using Ba/F3-EPOR cell lines and primary human erythroblast cultures, we found that JUNB was transcriptionally induced after erythropoietin addition and that JAK2 V617F constitutively induced JunB protein expression. Furthermore, JUNB knockdown reduced not only the growth of Ba/F3 cells by inducing apoptosis, but also the clonogenic and proliferative potential of human erythroid progenitors. These results establish a role for JunB in normal erythropoiesis and indicate that JunB may play a major role in the development of JAK2 V617F myeloproliferative disorders.231144152Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FRMLigue Nationale Contre le CancerINCaINSERMCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore