45 research outputs found

    Cartan subalgebras and the UCT problem, II

    Get PDF
    We show that outer approximately represenbtable actions of a finite cyclic group on UCT Kirchberg algebras satisfy a certain quasi-freeness type property if the corresponding crossed products satisfy the UCT and absorb a suitable UHF algebra tensorially. More concretely, we prove that for such an action there exists an inverse semigroup of homogeneous partial isometries that generates the ambient C*-algebra and whose idempotent semilattice generates a Cartan subalgebra. We prove a similar result for actions of finite cyclic groups with the Rokhlin property on UCT Kirchberg algebras absorbing a suitable UHF algebra. These results rely on a new construction of Cartan subalgebras in certain inductive limits of Cartan pairs. We also provide a characterisation of the UCT problem in terms of finite order automorphisms, Cartan subalgebras and inverse semigroups of partial isometries of the Cuntz algebra O2\mathcal{O}_2. This generalizes earlier work of the authors.Comment: minor revisions; final version, accepted for publication in Math. Ann.; 26 page

    Improved Xenobiotic Metabolism and Reduced Susceptibility to Cancer in Gluten-Sensitive Macaques upon Introduction of a Gluten-Free Diet

    Get PDF
    A non-human primate (NHP) model of gluten sensitivity was employed to study the gene perturbations associated with dietary gluten changes in small intestinal tissues from gluten-sensitive rhesus macaques (Macaca mulatta).Stages of remission and relapse were accomplished in gluten-sensitive animals by administration of gluten-free (GFD) and gluten-containing (GD) diets, as described previously. Pin-head-sized biopsies, obtained non-invasively by pediatric endoscope from duodenum while on GFD or GD, were used for preparation of total RNA and gene profiling, using the commercial Rhesus Macaque Microarray (Agilent Technologies),targeting expression of over 20,000 genes.When compared with normal healthy control, gluten-sensitive macaques showed differential gene expressions induced by GD. While observed gene perturbations were classified into one of 12 overlapping categories--cancer, metabolism, digestive tract function, immune response, cell growth, signal transduction, autoimmunity, detoxification of xenobiotics, apoptosis, actin-collagen deposition, neuronal and unknown function--this study focused on cancer-related gene networks such as cytochrome P450 family (detoxification function) and actin-collagen-matrix metalloproteinases (MMP) genes.A loss of detoxification function paralleled with necessity to metabolize carcinogens was revealed in gluten-sensitive animals while on GD. An increase in cancer-promoting factors and a simultaneous decrease in cancer-preventing factors associated with altered expression of actin-collagen-MMP gene network were noted. In addition, gluten-sensitive macaques showed reduced number of differentially expressed genes including the cancer-associated ones upon withdrawal of dietary gluten. Taken together, these findings indicate potentially expanded utility of gluten-sensitive rhesus macaques in cancer research

    Ariel: Enabling planetary science across light-years

    Get PDF

    CD11b+Ly6G+ cells induced by dsRNA

    Get PDF
    PolyI:C, a synthetic double-stranded RNA analog, acts as an immune-enhancing adjuvant that regresses tumors via cytotoxic T lymphocyte (CTL)-dependent and CTL-independent fashions, the latter of which remains largely unknown. Tumors contain CD11b+Ly6G+ cells, granulocytic myeloid-derived suppressor cells (G-MDSCs), or tumor-associated neutrophils (TANs), which play a critical role in tumor progression and development. Here, we demonstrate that CD11b+Ly6G+ cells respond to polyI:C and exhibit tumoricidal activity in an EL4 tumor implant model. PolyI:C-induced inhibition of tumor growth was attributed to caspase-8/3 cascade activation in tumor cells, which occurred independently of CD8α+/CD103+ dendritic cells (DCs) and CTLs. CD11b+Ly6G+ cells acted as anti-tumor effectors because depletion of CD11b+Ly6G+ cells totally abrogated tumor regression and caspase activation after polyI:C treatment. CD11b+Ly6G+ cells that had been activated with polyI:C showed cytotoxicity and inhibition of tumor growth through the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS). These responses were abolished in either toll/interleukin-1 receptor domain-containing adaptor molecule-1 (TICAM-1)-/- or interferon (IFN)-αÎČ receptor 1 (IFNAR1)-/- mice. Thus, our results suggest that polyI:C targets myeloid cells in tumors, where CD11b+Ly6G+ cells exhibit anti-tumor activity through TLR3/TICAM-1 and IFNAR pathways, independent of those in CD8α+/CD103+ DCs that prime CTLs
    corecore