6,489 research outputs found
Sexual maturation in captive spiny lobsters, Jasus edwardsii, and the relationship of fecundity and larval quality with maternal size
Reproductive and somatic parameters of southern rock lobsters, Jasus edwardsii, held captive since puerulus and wild-caught adults were examined in terms of size at onset of maturity (SOM) and fecundity, culminating in an examination of how adult size may relate to larval competency. The SOM was much smaller in captive animals (62.5 mm carapace length, CL) compared to historical fishery data and indicated that precocious maturation may be induced in captivity. During this study, the fecundity was assessed as the number of viable phyllosoma at hatch, which was ~ 45% of egg estimates from the historical fishery data, suggesting either declining egg numbers in wild stocks over time or that major egg loss occurs during embryonic development. The association between SOM and sexual dimorphism was examined for several morphometric parameters. In females, the SOM was concomitant with increases to the width of the 1st and 2nd abdominal segments above 62.5 mm CL, while 2nd and 3rd leg length increased disproportionately in males compared to females above 77.5 mm CL. There were significant correlations between viable fecundity and female size (r = 0.92), phyllosoma size (r = 0.74) and larval viability as quantified by stress indices (r = -0.56) and LD-50 (r = 0.56), indicating that larger females produce larger, more viable larvae. These physiological traits in larval, juvenile and adult animals may have an impact on fishery and aquaculture production
Locally critical quantum phase transitions in strongly correlated metals
When a metal undergoes a continuous quantum phase transition, non-Fermi
liquid behaviour arises near the critical point. It is standard to assume that
all low-energy degrees of freedom induced by quantum criticality are spatially
extended, corresponding to long-wavelength fluctuations of the order parameter.
However, this picture has been contradicted by recent experiments on a
prototype system: heavy fermion metals at a zero-temperature magnetic
transition. In particular, neutron scattering from CeCuAu has
revealed anomalous dynamics at atomic length scales, leading to much debate as
to the fate of the local moments in the quantum-critical regime. Here we report
our theoretical finding of a locally critical quantum phase transition in a
model of heavy fermions. The dynamics at the critical point are in agreement
with experiment. We also argue that local criticality is a phenomenon of
general relevance to strongly correlated metals, including doped Mott
insulators.Comment: 20 pages, 3 figures; extended version, to appear in Natur
Three-dimensional cephalometric evaluation of maxillary growth following in utero repair of cleft lip and alveolar-like defects in the mid-gestational sheep model
Objective: To evaluate maxillary growth following in utero repair of surgically created cleft lip and alveolar (CLA)-like defects by means of three-dimensional (3D) computer tomographic (CT) cephalometric analysis in the mid-gestational sheep model. Methods: In 12 sheep fetuses a unilateral CLA-like defect was created in utero (untreated control group: 4 fetuses). Four different bone grafts were used for the alveolar defect closure. After euthanasia, CT scans of the skulls of the fetuses, 3D re-constructions, and a 3D-CT cephalometric analysis were performed. Results: The comparisons between the operated and nonoperated skull sides as well as of the maxillary asymmetry among the experimental groups revealed no statistically significant differences of the 12 variables used. Conclusions: None of the surgical approaches used for the in utero correction of CLA-like defects seem to affect significantly postsurgical maxillary growth; however, when bone graft healing takes place, a tendency for almost normal maxillary growth can be observed. Copyright (c) 2006 S. Karger AG, Basel
Comparative Chromosome Maps of Neotropical Rodents Necromys lasiurus and Thaptomys nigrita (Cricetidae) Established by ZOO-FISH
This work presents chromosome homology maps between Mus musculus (MMU) and 2 South American rodent species from the Cricetidae group: Necromys lasiurus (NLA, 2n = 34) and Thaptomys nigrita (TNI, 2n = 52), established by ZOO-FISH using mouse chromosome-specific painting probes. Extending previous molecular cytogenetic studies in Neotropical rodents, the purpose of this work was to delineate evolutionary chromosomal rearrangements in Cricetidae rodents and to reconstruct the phylogenetic relationships among the Akodontini species. Our phylogenetic reconstruction by maximum parsimony analysis of chromosomal characters confirmed one consistent clade of all Neotropical rodents studied so far. In both species analyzed here, we observed the syntenic association of chromosome segments homologous to MMU 8/13, suggesting that this chromosome form is a synapomorphic trait exclusive to Neotropical rodents. Further, the previously described Akodontini-specific syntenic associations MMU 3/18 and MMU 6/12 were observed in N. lasiurus but not in T. nigrita, although the latter species is considered a member of the Akodontini tribe by some authors. Finally, and in agreement with this finding, N. lasiurus and Akodon serrensis share the derived fission of MMU 13, which places them as basal sister clades within Akodontini. Copyright (C) 2011 S. Karger AG, Base
Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record
Medvedev and Melott (2007) have suggested that periodicity in fossil
biodiversity may be induced by cosmic rays which vary as the Solar System
oscillates normal to the galactic disk. We re-examine the evidence for a 62
million year (Myr) periodicity in biodiversity throughout the Phanerozoic
history of animal life reported by Rohde & Mueller (2005), as well as related
questions of periodicity in origination and extinction. We find that the signal
is robust against variations in methods of analysis, and is based on
fluctuations in the Paleozoic and a substantial part of the Mesozoic.
Examination of origination and extinction is somewhat ambiguous, with results
depending upon procedure. Origination and extinction intensity as defined by RM
may be affected by an artifact at 27 Myr in the duration of stratigraphic
intervals. Nevertheless, when a procedure free of this artifact is implemented,
the 27 Myr periodicity appears in origination, suggesting that the artifact may
ultimately be based on a signal in the data. A 62 Myr feature appears in
extinction, when this same procedure is used. We conclude that evidence for a
periodicity at 62 Myr is robust, and evidence for periodicity at approximately
27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio
Quantum Tricritical Points in NbFe
Quantum critical points (QCPs) emerge when a 2nd order phase transition is
suppressed to zero temperature. In metals the quantum fluctuations at such a
QCP can give rise to new phases including unconventional superconductivity.
Whereas antiferromagnetic QCPs have been studied in considerable detail
ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs
are avoided through either a change to 1st order transitions or through an
intervening spin-density-wave (SDW) phase. Here, we study the prototype of the
second case, NbFe. We demonstrate that the phase diagram can be modelled
using a two-order-parameter theory in which the putative FM QCP is buried
within a SDW phase. We establish the presence of quantum tricritical points
(QTCPs) at which both the uniform and finite susceptibility diverge. The
universal nature of our model suggests that such QTCPs arise naturally from the
interplay between SDW and FM order and exist generally near a buried FM QCP of
this type. Our results promote NbFe as the first example of a QTCP, which
has been proposed as a key concept in a range of narrow-band metals, including
the prominent heavy-fermion compound YbRhSi.Comment: 21 pages including S
When Does the Concavity Index Constrain Stream Power Parameters?
By defining the attributes of river networks, we can quantitatively extract records of climatic and tectonic changes from them. The stream power incision model (SPIM) provides a framework within which this can be achieved, as it facilitates the calculation of the relative rock uplift from river characteristics. One parameter that has been widely employed in tectonic and fluvial geomorphology is the channel steepness index, a metric that can represent the normalized rock uplift rate experienced by a river. However, to accurately infer the channel steepness index, we must accurately estimate m/n, the ratio between the two positive exponents of the SPIM. Present methodologies to constrain m/n rely on an assumption that rock uplift and erodibility are spatially invariant. These conditions are rarely present on Earth. In this study, we use a synthetic example and examples from the Siwalik Hills and Olympic Mountains to demonstrate how existing methodologies to constrain m/n produce systematic errors when there is spatial variation, and particularly spatial gradients, in the processes driving landscape evolution. To solve this problem, we present a methodology to estimate m/n based on a large river network inversion that accounts for spatial variation in landscapes. After demonstrating that the methodology can accurately recover m/n in our synthetic landscape, we show that our methodology can reconcile contrasting observations in the Siwaliks, and is critical to inferring accurate values of channel steepness index in the Olympic Mountains. This highlights the utility of large topographic inversions for investigating landscape dynamics
- …
