10 research outputs found

    Dark photon bounds in the dark EFT

    Get PDF
    Dark photons are massive abelian gauge bosons that interact with ordinary photons via a kinetic mixing with the hypercharge field strength tensor. This theory is probed by a variety of different experiments and limits are set on a combination of the dark photon mass and kinetic mixing parameter. These limits can however be strongly modified by the presence of additional heavy degrees of freedom. Using the framework of dark effective field theory, we study how robust are the current experimental bounds when these new states are present. We focus in particular on the possible existence of a dark dipole interaction between the Standard Model leptons and the dark photon. We show that, under certain assumptions, the presence of a dark dipole modifies existing supernovae bounds for cut-off scales up to O(10-100 TeV). On the other hand, terrestrial experiments, such as LSND and E137, can probe cut-off scales up to O(3 TeV). For the latter experiment we highlight that the bound may extend down to vanishing kinetic mixing

    Higgs mass determination in supersymmetry

    No full text
    We present the state-of-the-art of the effective field theory computation of the MSSM Higgs mass, improving the existing ones by including extra threshold corrections. We show that, with this approach, the theoretical uncertainty is within 1 GeV in most of the relevant parameter space. We confirm the smaller value of the Higgs mass found in the EFT computations, which implies a slightly heavier SUSY scale. We study the large tan β region, finding that sbottom thresholds might relax the upper bound on the scale of SUSY. We present SusyHD, a fast computer code that computes the Higgs mass and its uncertainty for any SUSY scale, from the TeV to the Planck scale, even in Split SUSY, both in the D R ¯ DR \overline{\mathrm{DR}} and in the on-shell schemes. Finally, we apply our results to derive bounds on some well motivated SUSY models, in particular we show how the value of the Higgs mass allows to determine the complete spectrum in minimal gauge mediation
    corecore