10 research outputs found

    Simultaneous temporal trends in dementia incidence and prevalence, 2005–2013 : a population-based retrospective cohort study in Saskatchewan, Canada

    Get PDF
    Original studies published over the last decade regarding time trends in dementia report mixed results. The aims of the present study were to use linked administrative health data for the province of Saskatchewan for the period 2005/2006 to 2012/2013 to: (1) examine simultaneous temporal trends in annual age- and sex-specific dementia incidence and prevalence among individuals aged 45 and older, and (2) stratify the changes in incidence over time by database of identification. Using a population-based retrospective cohort study design, data were extracted from seven provincial administrative health databases linked by a unique anonymized identification number. Individuals 45 years and older at first identification of dementia between April 1, 2005 and March 31, 2013 were included, based on case definition criteria met within any one of four administrative health databases (hospital, physician, prescription drug, and long-term care). Between 2005/2006 and 2012/2013, the 12-month age-standardized incidence rate of dementia declined significantly by 11.07% and the 12-month age-standardized prevalence increased significantly by 30.54%. The number of incident cases decreased from 3,389 to 3,270 and the number of prevalent cases increased from 8,795 to 13,012. Incidence rate reductions were observed in every database of identification. We observed a simultaneous trend of decreasing incidence and increasing prevalence of dementia over a relatively short 8-year time period from 2005/2006 to 2012/2013. These trends indicate that the average survival time of dementia is lengthening. Continued observation of these time trends is warranted given the short study period

    Meat Intake and the Dose of Vitamin B3 - Nicotinamide:Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?

    Get PDF
    Meat and vitamin B 3 – nicotinamide – intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by ‘welcoming’ gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B 3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive ‘meat transitions’. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic ‘old friends’ compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B 3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress

    In vivo tracking and protective properties of Yersinia-specific intestinal T cells

    No full text
    After invasion via M cells enteropathogenic Yersinia enterocolitica subsequently establish an infection at three different sites: (i) Peyer's patches (PP), (ii) mesenteric lymph nodes (MLN), and after systemic dissemination in (iii) spleen, liver and lung. In order to characterize protective properties of intestinal T cells at the different sites of Y. enterocolitica infection, PP and MLN T cells were isolated from Y. enterocolitica-infected C57Bl/6 mice and Yersinia-specific T cell lines were generated. These T cells exhibited the phenotype of CD4 Th1 cells. The adoptive transfer of Yersinia-specific Th1 cells from PP and MLN conferred protection against a lethal orogastric inoculum with Y. enterocolitica as revealed by survival post-infection. However, determination of bacterial counts in infected organs revealed that the transfer of PP T cells conferred protection in spleen but not in MLN and PP, whereas the transfer of T cells from MLN reduced bacterial counts in both spleen and MLN but not in PP. To elucidate the different protection pattern we wanted to track the transferred cells in vivo. For this purpose the cells were labelled with the stable green fluorescent cell linker PKH2-GL prior to the adoptive transfer. In vivo tracking of these cells revealed that the distribution pattern of transferred T cells in spleen, MLN and PP correlated closely with the protection pattern observed after Yersinia infection. Thus, most cells were recovered from the spleen, while only few cells were recovered from MLN and PP. In keeping with these results a rapid and significant increase in interferon-gamma (IFN-γ) production in the spleen of mice after adoptive transfer of T cell lines was observed. Taken together, the present results demonstrate that intestinal CD4 Th1 cells from PP and MLN may be involved in the defence against Y. enterocolitica at different sites of the infection, and that PKH2-GL labelling is a suitable tool to characterize T cell functions in vivo

    Patient-centred communication intervention study to evaluate nurse-patient interactions in complex continuing care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Communication impairment is a frequent consequence of stroke. Patients who cannot articulate their needs respond with frustration and agitation, resulting in poor optimization of post-stroke functions. A key component of patient-centred care is the ability of staff to communicate in a way that allows them to understand the patient’s needs. We developed a patient-centred communication intervention targeting registered and unregulated nursing staff caring for complex continuing care patients with communication impairments post stroke. Research objectives include 1) examining the effects of the intervention on patients’ quality of life, depression, satisfaction with care, and agitation; and (2) examining the extent to which the intervention improves staff’s attitudes and knowledge in caring for patients with communication impairments. The intervention builds on a previous pilot study.</p> <p>Methods/design</p> <p>A quasi-experimental repeated measures non-equivalent control group design in a complex continuing care facility is being used. Patients with a communication impairment post-stroke admitted to the facility are eligible to participate. All staff nurses are eligible. Baseline data are collected from staff and patients. Follow-up will occur at 1 and 3 months post-intervention. Subject recruitment and data collection from 60 patients and 30 staff will take approximately 36 months. The Patient-Centred Communication Intervention consists of three components: (1) development of an individualized patient communication care plan; (2) a one-day workshop focused on communication and behavioural management strategies for nursing staff; and (3) a staff support system. The intervention takes comprehensive patient assessments into account to inform the development of communication and behavioural strategies specifically tailored to each patient.</p> <p>Discussion</p> <p>The Patient-Centred Communication Intervention will provide staff with strategies to facilitate interactions with patients and to minimize agitation associated with considerable stress. The improvement of these interactions will lead to a reduction of agitation, which has the additional significance of increasing patients’ well-being, quality of life, and satisfaction with care.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier NCT01654029</p
    corecore