21 research outputs found

    Computer-Generated Experimental Designs for Irregular-Shaped Regions

    No full text
    This paper focuses on the construction of computer-generated designs on irregularly-shaped, constrained regions. Overviews of the Fedorov exchange algorithm (FEA) and other exchange algorithms for the construction of D-optimal designs are given. A faster implementation of the FEA is presented, which is referred to as fast-FEA (denoted FFEA). The FFEA was applied to construct D-optimal designs for several published examples with constrained experimental regions. Designs resulting from the FFEA are more D-efficient than published designs, and provide benchmarks for future comparisons of design construction algorithms. The construction of G-optimal designs for constrained regions is also discussed and illustrated with a published example

    Optimum tolerance design using component-amount and mixture-amount experiments

    No full text
    The tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface methodology (RSM) designs, models, and optimization techniques to solve the tolerance design problem for the worst-case scenario in which the assembly characteristic is the sum of the component characteristics. In this article, component-amount (CA) and mixture-amount (MA) experiment approaches are proposed as more appropriate for solving this class of tolerance design problems. The CA and MA approaches are typically used for product formulation problems, but can also be applied to this type of tolerance design problem. The advantages of the CA and MA approaches over the RSM approach and over the standard, worst-case tolerance-design method are explained. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling, and optimization) are illustrated using real examples
    corecore